Jordan's theorem on primitive groups involving a p-cycle

Amanda Caroline Silva
Deisiane Lopes Gonçalves Igor Martins Silva

Professor: Csaba Schneider
Departamento de Matemática
Universidade Federal de Minas Gerais

Belo Horizonte, November 2019

Question

If G is a group with a 2 -transitive action on Ω, then G is primitive on Ω.

Question

Question: if G is primitive, then G is a group with a 2-transitive action on Ω ?

Question

Question: if G is primitive, then G is a group with a 2-transitive action on Ω ?

No.

Example

Consider D_{5}. Let Ω be the set of cosets of the subgroup H of order 2. Observe that D_{5} acts transitively on Ω by right multiplication on Ω. Since $|\Omega|=5$, this group acts primitively on Ω. But this group action cannot be 2-transitive, otherwise, D_{5} would be transitive on the set of ordered par of distinct points on Ω. Since $20 \nmid\left|D_{5}\right|$, and this is a contradiction.

Question

Question: if G is primitive, then G is a group with a 2-transitive action on Ω ?

No.

However, one condition is enough for a positive response.

Question

Theorem
Let G be a group that acts primitively on a finite set Ω. Let $\Lambda \subseteq \Omega$ be such that $|\Lambda| \leq|\Omega|-2$. If G_{Λ} acts primitively on $\Omega-\Lambda$, then the action of G on Ω is $(|\Lambda|+1)$-transitive.

Question

Theorem

Let G be a group that acts primitively on a finite set Ω. Let $\Lambda \subseteq \Omega$ be such that $|\Lambda| \leq|\Omega|-2$. If G_{Λ} acts primitively on $\Omega-\Lambda$, then the action of G on Ω is $(|\Lambda|+1)$-transitive.

- This result is due to Camille Jordan in 1870's.
- It will be important to demonstrate the main theorem of this work.

Main theorem

[^0]
Main theorem

Theorem

Let G be a primitive permutation group on a finite set Ω. Let p be a prime with $p \leq|\Omega|-3$. If G contains a p-cycle, then G is either the alternating group or the symmetric group.

- This result was also assigned to Camille Jordan.
- It is a result of classification of primitive permutation groups on finite sets that contains a p-cycle.

Translate and block

Definition

- Let G be a group that acts transitively on a set Ω.
- $\varnothing \neq \Delta \subseteq \Omega$.

Translate and block

Definition

- Let G be a group that acts transitively on a set Ω.
- $\varnothing \neq \Delta \subseteq \Omega$.

The set $\Delta g=\{\delta g \mid \delta \in \Delta\}$ is called a translate of Δ, with $g \in G$.

Translate and block

Definition

- Let G be a group that acts transitively on a set Ω.
- $\varnothing \neq \Delta \subseteq \Omega$.

If $\forall g \in G$ such that $\Delta g \neq \Delta$ we have $\Delta g \cap \Delta=\varnothing$, we say that Δ a block.

Translate and block

Example

Let D_{4} acting on $\Omega=\{1,2,3,4\}$ and let $\Delta=\{1,3\}$. Then $\Delta g=\{1,3\}$ or $\{2,4\}$, that is, Δ is a block.

Primitive and imprimitive

Definition

A transitive action of G on Ω is primitive if the only blocks are

$$
\Omega \text { and }\{\omega\}, \text { for all } \omega \in \Omega
$$

Otherwise, the action is imprimitive.

Properties of block

Lemma

Let G be a group that acts transitively on a finite set Ω and let $\Delta \subseteq \Omega$ be a block. Denote $\mathcal{P}=\{\Delta g \mid g \in G\}$. Then,

- Δg is a block, that is, for all $g, h \in G$ such that $\Delta g \neq \Delta h$, we have $\Delta g \cap \Delta h=\varnothing$.

Properties of block

Lemma

Let G be a group that acts transitively on a finite set Ω and let $\Delta \subseteq \Omega$ be a block. Denote $\mathcal{P}=\{\Delta g \mid g \in G\}$. Then,

- G acts transitively on \mathcal{P}.

Properties of block

Lemma

Let G be a group that acts transitively on a finite set Ω and let $\Delta \subseteq \Omega$ be a block. Denote $\mathcal{P}=\{\Delta g \mid g \in G\}$. Then,

$$
-\cup_{g \in G} \Delta g=\Omega
$$

Properties of block

Lemma

Let G be a group that acts transitively on a finite set Ω and let $\Delta \subseteq \Omega$ be a block. Denote $\mathcal{P}=\{\Delta g \mid g \in G\}$. Then,

- $|\Delta|$ divides $|\Omega|$ and $|\mathcal{P}|=\frac{|\Omega|}{|\Delta|}$.

Properties of block

Corollary

A transitive group action on a set of prime cardinality is primitive.

Action k-transitive

Definition

Let G be a group that acts on a set Ω where $|\Omega| \geq k$. We say that G is k-transitive on Ω, if

$$
\forall\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right),\left(\beta_{1}, \beta_{2}, \ldots, \beta_{k}\right) \in \Omega^{k}
$$

with $\alpha_{i} \neq \alpha_{j}$ and $\beta_{i} \neq \beta_{j}$, if $i \neq j$, there exists an element $g \in G$ such that

$$
\alpha_{i} g=\beta_{i}, \text { for } 1 \leq i \leq k
$$

If $k>1$, then we say that an action is multiply transitive.

Action k-transitive

Observation

If G is k-transitive on Ω, then G is ℓ-transitive on Ω, for all $1 \leq \ell \leq k$.

Action k-transitive

Example

The group S_{n} is n-transitive on $\Omega=\{1,2, \ldots, n\}$.

Furthermore, the only subgroups of S_{n} that are $(n-2)$-transitive on $\{1, \ldots, n\}$ are S_{n} and A_{n}.

Pointwise and setwise stabilizer

Definition

The pointwise stabilizer of Λ is defined as

$$
G_{\Lambda}:=\{g \in G \mid \lambda g=\lambda, \forall \lambda \in \Lambda\} .
$$

The setwise stabilizer of Λ is defined as

$$
G_{(\Lambda)}:=\{g \in G \mid \Lambda g=\Lambda\}
$$

Pointwise and setwise stabilizer

Observation

(1) $G_{(\Lambda)}$ acts on Λ and the kernel of this action is G_{Λ}. Thus $G_{\Lambda} \unlhd G_{(\Lambda)}$.
(2) Furthermore $G_{(\Lambda)}=G_{(\Omega-\Lambda)}$ that implies $G_{\Omega-\Lambda} \unlhd G_{(\Lambda)}$.

Lemma

Suppose that a group G acts transitively on a finite set Ω. A group G is k-transitive on Ω if and only if the stabilizer G_{γ} is $(k-1)$-transitive on $\Omega-\{\gamma\}$, where $\gamma \in \Omega$ and k is an integer such that $k \leq|\Omega|$.

Definition

Given a transitive action of G on Ω and a set $X \subsetneq \Omega$. We say that X is a Jordan set if G_{X} is transitive on $\Omega-X$, and that X is strongly Jordan set if G_{X} is primitive on $\Omega-X$.

Theorem

Let G be a group acting primitively on a finite set Ω and let $X \subseteq \Omega$ be a Jordan set with $0<|X|<|\Omega|-1$. Then, for all $\alpha \in \Omega$, the stabilizer G_{α} is transitive on $\Omega-\{\alpha\}$ and G is 2-transitive on Ω. Furthermore, if X is strongly Jordan, then G_{α} is primitive on $\Omega-\{\alpha\}$.

Proof Sketch

It is sufficient to prove that under this conditions every one-point subset of Ω is (strongly) Jordan set.

Let X_{0} be the minimal among nonempty (strongly) Jordan subsets of X.

For the cases $\left|X_{0}\right| \geq \frac{|\Omega|}{2}$ and $1<\left|X_{0}\right|<\frac{|\Omega|}{2}$, we obtain a contradiction.

Since translates of (strongly) Jordan set are (strongly) Jordan set, thus we obtain the result.

Jordan's theorem

Theorem

Let G be a group that acts primitively on a finite set Ω. Let $\Lambda \subseteq \Omega$ be such that $|\Lambda| \leq|\Omega|-2$. Suppose that G_{Λ} acts primitively on $\Omega-\Lambda$. Then the action of G on Ω is $(|\Lambda|+1)$-transitive.

Jordan's theorem

Theorem

Let G be a group that acts primitively on a finite set Ω. Let $\Lambda \subseteq \Omega$ be such that $|\Lambda| \leq|\Omega|-2$. Suppose that G_{Λ} acts primitively on $\Omega-\Lambda$. Then the action of G on Ω is $(|\Lambda|+1)$-transitive.

Proof Sketch

We will prove by induction on $|\Omega|$. We can assume $|\Omega|>2$ and $|\Lambda|>0$.

For $|\Omega|=3$ we have $|\Lambda|=1$ and the result is true. Suppose the result is valid for $|\Omega|<k$. Let $|\Omega|=k>3$ and let $\alpha \in \Omega$.

We have G_{α} is primitive on $\Omega-\{\alpha\}$. Then we can assume $\alpha \in \Lambda$.

Jordan's theorem

Proof Sketch

$$
\begin{aligned}
\left(G_{\alpha}\right)_{\Lambda-\{\alpha\}} & =\left\{g \in G_{\alpha} \mid \lambda \cdot g=\lambda, \forall \lambda \in \Lambda-\{\alpha\}\right\} . \\
& =\{g \in G \mid \alpha \cdot g=\alpha \wedge \lambda \cdot g=\lambda, \forall \lambda \in \Lambda-\{\alpha\}\} \\
& =G_{\Lambda} .
\end{aligned}
$$

Jordan's theorem

Proof Sketch

By the hypothesis G_{Λ} is primitive on $\Omega-\Lambda=(\Omega-\{\alpha\})-(\Lambda-\{\alpha\})$. We have $|\Lambda-\{\alpha\}| \leq|\Omega-\{\alpha\}|-2$, since $|\Omega-\{\alpha\}|=k-1$

We can apply the inductive hypothesis. Then the action of G_{α} to $\Omega-\{\alpha\}$ is $|\Lambda|$-transitive. Thus, we obtain that G is $(|\Lambda|+1)$-transitive.

Jordan's theorem involving a 3-cycle

Corollary

Let G be a primitive permutation group on a finite set Ω that contains a 3 -cycle. Then G is either the symmetric group or the alternating group on Ω.

Jordan's theorem involving a 3-cycle

Corollary

Let G be a primitive permutation group on a finite set Ω that contains a 3 -cycle. Then G is either the symmetric group or the alternating group on Ω.

Proof Sketch

Let (a, b, c) be a 3-cycle contained in G. Let $\Lambda=\Omega-\{a, b, c\}$.
From the definition of G_{Λ} we have $(a, b, c) \in G_{\Lambda}$, that implies G_{Λ} is transitive on $\{a, b, c\}=\Omega-\Lambda$.

Jordan's theorem involving a 3-cycle

Since $|\{a, b, c\}|=3$ is a prime number, we obtain that G_{Λ} is primitive on $\{a, b, c\}$. We have $|\Lambda| \leq|\Lambda|+1=|\Omega|-2$, then we have G is $(|\Omega|-2)$-transitive on Ω.

The only subgroups of $\operatorname{Sym}(\Omega)$ that are $(n-2)$-transitive on Ω are $\operatorname{Sym}(\Omega)$ and $\operatorname{Alt}(\Omega)$

Lemma
Let x be an n-cycle in S_{n}. Then $\langle x\rangle=C_{S_{n}}(x)=\left\{g \in S_{n} \mid g x=x g\right\}$.

Jordan's theorem involving a p-cycle

Theorem (Jordan)
Let G be a primitive permutation group on a finite set Ω. Let p be a prime with $p \leq|\Omega|-3$. If G contains a p-cycle, then G is either the alternating group or the group symmetric.

Jordan's theorem involving a p-cycle

Theorem (Jordan)
Let G be a primitive permutation group on a finite set Ω. Let p be a prime with $p \leq|\Omega|-3$. If G contains a p-cycle, then G is either the alternating group or the group symmetric.

Proof Sketch

Let $|\Omega|=n$ and suppose that $p \neq 3$. Let σ be an p-cycle in G.
Define $\Lambda:=\{\omega \in \Omega \mid \omega \cdot \sigma=\omega\}$.
We have $|\Omega-\Lambda|=n-|\Lambda|=p$.
Note that $\sigma \in G_{\Lambda}$, then G_{Λ} acts transitively on $\Omega-\Lambda$. Since p is a prime number the action is primitive.

Jordan's theorem involving a p-cycle

Proof Sketch

From Jordan's Theorem G is $(|\Lambda|+1)$-transitive, that implies G is $|\Lambda|$-transitive.

Each element in G induces a permutation in $\operatorname{Sym}(\Lambda)$. Thus the natural homomorphism $\rho: G_{(\Lambda)} \rightarrow \operatorname{Sym}(\Lambda)$ is surjective, and then $\operatorname{Sym}(\Lambda) \cong G_{(\Lambda)} / G_{\Lambda}$.

Let $P:=\langle\sigma\rangle$. We have $|P|=p$ and $P \subseteq G_{\Lambda}$.
Since G_{Λ} fixes all points in Λ and swaps all points in $\Omega-\Lambda$ we obtain that G_{Λ} acts faithfully on $\Omega-\Lambda$.

Jordan's theorem involving a p-cycle

Proof Sketch

We have $\left|G_{\Lambda}\right|$ divides $p!$. It follows that P is a Sylow p-subgroup of G_{Λ}.
Observe that $G_{\Lambda} \unlhd G_{(\Lambda)}$, by the Frattini argument $G_{(\Lambda)}=N G_{\Lambda}$, where $N=N_{G_{(\Lambda)}}(P)$.

Also observe that $G_{(\Lambda)} / G_{\Lambda}=N G_{\Lambda} / G_{\Lambda} \cong N /\left(N \cap G_{\Lambda}\right)$. That implies $\operatorname{Sym}(\Lambda) \cong N / N_{\Lambda}$.

Since $|\Lambda|=|\Omega|-p \geq 3$, then $\operatorname{Sym}(\Lambda)$ contains a 3-cycle, and such a 3 -cycle must lie in $\operatorname{Alt}(\Lambda)$.

Jordan's theorem involving a p-cycle

Proof Sketch

Note that $\left(N / N_{\Lambda}\right)^{\prime}=N^{\prime} N_{\Lambda} / N_{\Lambda} \cong N^{\prime} /\left(N^{\prime} \cap N_{\Lambda}\right)$.
Thus there exists $x \in N^{\prime}$ such that the permutation induced by x on Λ is a 3-cycle.

We have $\operatorname{Aut}(P)$ is abelian.
Define $\rho: N \rightarrow \operatorname{Aut}(P)$, where $\rho_{n}(\sigma)=n^{-1} \sigma n$. Since $\operatorname{ker} \rho=C_{N}(P)$, then $N / C_{N}(P) \cong \operatorname{Im} \rho \leq \operatorname{Aut}(P)$ and $N / C_{N}(P)$ is an abelian group.

Observe that $x \in N^{\prime} \subseteq C_{N}(P)$, and so x commutes with σ.

Jordan's theorem involving a p-cycle

Proof Sketch

The permutation of $\Omega-\Lambda$ induced by x commutes with a p-cycle on these p points. The order of this permutation divides p.

Since x induces a 3 -cycle on Λ, and $3 \nmid p$, it follows that x^{p} also induces a 3-cycle on Λ.

We know that x^{p} fixes the points of $\Omega-\Lambda$. Since G acts faithfully on Ω, x^{p} is a 3-cycle.

The corollary give us the result.

Application

Theorem (Bochert)

Let Ω be a finite set of cardinality n and let $S=\operatorname{Sym}(\Omega)$. Let $G \lesseqgtr S$ that is primitive on Ω. If $G \neq \operatorname{Alt}(\Omega)$, then $|S: G| \geq\left(\frac{n+1}{2}\right)$!.

Application

Theorem (Bochert)

Let Ω be a finite set of cardinality n and let $S=\operatorname{Sym}(\Omega)$. Let $G \lessgtr S$ that is primitive on Ω. If $G \neq \operatorname{Alt}(\Omega)$, then $|S: G| \geq\left(\frac{n+1}{2}\right)$!.

If G a group of permutation that acts primitively in Ω such that $G \neq \operatorname{Sym}(\Omega), \operatorname{Alt}(\Omega)$, then G is "small".

Generalizations

Theorem (Neumman, 1975)
Let G be a primitive permutation group of degree n containing a cycle of length p^{r}, where $p \neq 3$ is a prime number. If $n>p^{r}+2$, then G is alternating group or symmetric group.

Generalizations

Theorem (Neumman, 1975)
Let G be a primitive permutation group of degree n containing a cycle of length p^{r}, where $p \neq 3$ is a prime number. If $n>p^{r}+2$, then G is alternating group or symmetric group.

- There is another generalization of the year 2012. This illustrates the importance of the main result of this work.

Bibliography I

國 John D Dixon and Brian Mortimer．
Permutation groups，volume 163.
Springer Science \＆Business Media， 1996.
庫 I Martin Isaacs．
Finite group theory，volume 92.
American Mathematical Soc．， 2008.
圊 Gareth A Jones．
Primitive permutation groups containing a cycle．
Bulletin of the Australian Mathematical Society，89（1）：159－165， 2012.

Bibliography II

國 Peter M Neumann.
Primitive permutation groups containing a cycle of prime-power length.
Bulletin of the London Mathematical Society, 7(3):298-299, 1975.
國 Helmut Wielandt.
Finite permutation groups.
Academic Press, 1964.

[^0]: Theorem
 Let G be a primitive permutation group on a finite set Ω. Let p be a prime with $p \leq|\Omega|-3$. If G contains a p-cycle, then G is either the alternating group or the symmetric group.

