Jordan's theorem on primitive groups involving a *p*-cycle

Amanda Caroline Silva Deisiane Lopes Gonçalves Igor Martins Silva

Professor: Csaba Schneider Departamento de Matemática Universidade Federal de Minas Gerais

Belo Horizonte, November 2019

If *G* is a group with a 2-transitive action on Ω , then *G* is primitive on Ω .

Question: if *G* is primitive, then *G* is a group with a 2-transitive action on Ω ?

Question: if *G* is primitive, then *G* is a group with a 2-transitive action on Ω ?

No.

Example

Consider D_5 . Let Ω be the set of cosets of the subgroup H of order 2. Observe that D_5 acts transitively on Ω by right multiplication on Ω . Since $|\Omega| = 5$, this group acts primitively on Ω . But this group action cannot be 2-transitive, otherwise, D_5 would be transitive on the set of ordered par of distinct points on Ω . Since $20 \nmid |D_5|$, and this is a contradiction.

Question: if *G* is primitive, then *G* is a group with a 2-transitive action on Ω ?

No.

However, one condition is enough for a positive response.

Theorem

Let *G* be a group that acts primitively on a finite set Ω . Let $\Lambda \subseteq \Omega$ be such that $|\Lambda| \leq |\Omega| - 2$. If G_{Λ} acts primitively on $\Omega - \Lambda$, then the action of *G* on Ω is $(|\Lambda| + 1)$ -transitive.

Theorem

Let *G* be a group that acts primitively on a finite set Ω . Let $\Lambda \subseteq \Omega$ be such that $|\Lambda| \leq |\Omega| - 2$. If G_{Λ} acts primitively on $\Omega - \Lambda$, then the action of *G* on Ω is $(|\Lambda| + 1)$ -transitive.

- This result is due to Camille Jordan in 1870's.
- It will be important to demonstrate the main theorem of this work.

Main theorem

Theorem

Let *G* be a primitive permutation group on a finite set Ω . Let *p* be a prime with $p \leq |\Omega| - 3$. If *G* contains a *p*-cycle, then *G* is either the alternating group or the symmetric group.

Main theorem

Theorem

Let *G* be a primitive permutation group on a finite set Ω . Let *p* be a prime with $p \leq |\Omega| - 3$. If *G* contains a *p*-cycle, then *G* is either the alternating group or the symmetric group.

- This result was also assigned to Camille Jordan.
- It is a result of classification of primitive permutation groups on finite sets that contains a *p*-cycle.

Definition

- Let *G* be a group that acts transitively on a set Ω .
- $\varnothing \neq \Delta \subseteq \Omega$.

Definition

- Let *G* be a group that acts transitively on a set Ω .

$$- \varnothing \neq \Delta \subseteq \Omega.$$

The set $\Delta g = \{ \delta g \mid \delta \in \Delta \}$ is called a **translate** of Δ , with $g \in G$.

Definition

- Let *G* be a group that acts transitively on a set Ω .
- $\varnothing \neq \Delta \subseteq \Omega$.

If $\forall g \in G$ such that $\Delta g \neq \Delta$ we have $\Delta g \cap \Delta = \emptyset$, we say that Δ a **block**.

Example

Let D_4 acting on $\Omega = \{1, 2, 3, 4\}$ and let $\Delta = \{1, 3\}$. Then $\Delta g = \{1, 3\}$ or $\{2, 4\}$, that is, Δ is a block.

Primitive and imprimitive

Definition

A transitive action of G on Ω is **primitive** if the only blocks are

 Ω and $\{\omega\}$, for all $\omega \in \Omega$.

Otherwise, the action is imprimitive.

Lemma

Let *G* be a group that acts transitively on a finite set Ω and let $\Delta \subseteq \Omega$ be a block. Denote $\mathcal{P} = \{\Delta g \mid g \in G\}$. Then,

- Δg is a block, that is, for all g, $h \in G$ such that $\Delta g \neq \Delta h$, we have $\Delta g \cap \Delta h = \emptyset$.

Lemma

Let *G* be a group that acts transitively on a finite set Ω and let $\Delta \subseteq \Omega$ be a block. Denote $\mathcal{P} = \{\Delta g \mid g \in G\}$. Then,

- G acts transitively on \mathcal{P} .

Lemma

Let *G* be a group that acts transitively on a finite set Ω and let $\Delta \subseteq \Omega$ be a block. Denote $\mathcal{P} = \{\Delta g \mid g \in G\}$. Then,

-
$$\cup_{g\in G}\Delta g = \Omega.$$

Lemma

Let *G* be a group that acts transitively on a finite set Ω and let $\Delta \subseteq \Omega$ be a block. Denote $\mathcal{P} = \{\Delta g \mid g \in G\}$. Then,

-
$$|\Delta|$$
 divides $|\Omega|$ and $|\mathcal{P}| = rac{|\Omega|}{|\Delta|}$.

Corollary

A transitive group action on a set of prime cardinality is primitive.

< □ > < ⑦ > < ≧ > < ≧ > ≧ > ○ Q () 6/27

Action *k*-transitive

Definition

Let *G* be a group that acts on a set Ω where $|\Omega| \ge k$. We say that *G* is **k-transitive on** Ω , if

$$orall \left(lpha_1, \ lpha_2, \ \ldots, \ lpha_k
ight), \left(eta_1, \ eta_2, \ \ldots, \ eta_k
ight) \in \Omega^k$$

with $\alpha_i \neq \alpha_j$ and $\beta_i \neq \beta_j$, if $i \neq j$, there exists an element $g \in G$ such that

$$\alpha_i g = \beta_i$$
, for $1 \le i \le k$

If k > 1, then we say that an action is **multiply transitive**.

Action *k*-transitive

Observation

If *G* is *k*-transitive on Ω , then *G* is ℓ -transitive on Ω , for all $1 \le \ell \le k$.

Action *k*-transitive

Example

The group S_n is *n*-transitive on $\Omega = \{1, 2, ..., n\}$.

Furthermore, the only subgroups of S_n that are (n-2)-transitive on $\{1, ..., n\}$ are S_n and A_n .

Pointwise and setwise stabilizer

Definition

The **pointwise stabilizer** of Λ is defined as

$$G_{\Lambda} := \{ g \in G \mid \lambda g = \lambda, \ \forall \lambda \in \Lambda \}.$$

The **setwise stabilizer** of Λ is defined as

$$G_{(\Lambda)} \coloneqq \{g \in G \mid \Lambda g = \Lambda\}.$$

Pointwise and setwise stabilizer

Observation

- $G_{(\Lambda)}$ acts on Λ and the kernel of this action is G_{Λ} . Thus $G_{\Lambda} \trianglelefteq G_{(\Lambda)}$.
- **2** Furthermore $G_{(\Lambda)} = G_{(\Omega \Lambda)}$ that implies $G_{\Omega \Lambda} \trianglelefteq G_{(\Lambda)}$.

Lemma

Suppose that a group *G* acts transitively on a finite set Ω . A group *G* is *k*-transitive on Ω if and only if the stabilizer G_{γ} is (k-1)-transitive on $\Omega - \{\gamma\}$, where $\gamma \in \Omega$ and *k* is an integer such that $k \leq |\Omega|$.

Definition

Given a transitive action of *G* on Ω and a set $X \subsetneq \Omega$. We say that *X* is a **Jordan set** if G_X is transitive on $\Omega - X$, and that *X* is **strongly Jordan set** if G_X is primitive on $\Omega - X$.

Theorem

Let *G* be a group acting primitively on a finite set Ω and let $X \subseteq \Omega$ be a Jordan set with $0 < |X| < |\Omega| - 1$. Then, for all $\alpha \in \Omega$, the stabilizer G_{α} is transitive on $\Omega - \{\alpha\}$ and *G* is 2-transitive on Ω . Furthermore, if *X* is strongly Jordan, then G_{α} is primitive on $\Omega - \{\alpha\}$.

Proof Sketch

It is sufficient to prove that under this conditions every one-point subset of Ω is (strongly) Jordan set.

Let X_0 be the minimal among nonempty (strongly) Jordan subsets of X.

For the cases $|X_0| \ge \frac{|\Omega|}{2}$ and $1 < |X_0| < \frac{|\Omega|}{2}$, we obtain a contradiction.

Since translates of (strongly) Jordan set are (strongly) Jordan set, thus we obtain the result.

Theorem

Let *G* be a group that acts primitively on a finite set Ω . Let $\Lambda \subseteq \Omega$ be such that $|\Lambda| \leq |\Omega| - 2$. Suppose that G_{Λ} acts primitively on $\Omega - \Lambda$. Then the action of *G* on Ω is $(|\Lambda| + 1)$ -transitive.

Theorem

Let *G* be a group that acts primitively on a finite set Ω . Let $\Lambda \subseteq \Omega$ be such that $|\Lambda| \leq |\Omega| - 2$. Suppose that G_{Λ} acts primitively on $\Omega - \Lambda$. Then the action of *G* on Ω is $(|\Lambda| + 1)$ -transitive.

Proof Sketch

We will prove by induction on $|\Omega|.$ We can assume $|\Omega|>2$ and $|\Lambda|>0.$

For $|\Omega| = 3$ we have $|\Lambda| = 1$ and the result is true. Suppose the result is valid for $|\Omega| < k$. Let $|\Omega| = k > 3$ and let $\alpha \in \Omega$.

We have G_{α} is primitive on $\Omega - \{\alpha\}$. Then we can assume $\alpha \in \Lambda$.

Proof Sketch

$$(G_{\alpha})_{\Lambda-\{\alpha\}} = \{g \in G_{\alpha} \mid \lambda \cdot g = \lambda, \forall \lambda \in \Lambda - \{\alpha\}\}.$$

= $\{g \in G \mid \alpha \cdot g = \alpha \land \lambda \cdot g = \lambda, \forall \lambda \in \Lambda - \{\alpha\}\}$
= $G_{\Lambda}.$

Proof Sketch

By the hypothesis G_{Λ} is primitive on $\Omega - \Lambda = (\Omega - \{\alpha\}) - (\Lambda - \{\alpha\})$. We have $|\Lambda - \{\alpha\}| \le |\Omega - \{\alpha\}| - 2$, since $|\Omega - \{\alpha\}| = k - 1$

We can apply the inductive hypothesis. Then the action of G_{α} to $\Omega - \{\alpha\}$ is $|\Lambda|$ -transitive. Thus, we obtain that *G* is $(|\Lambda| + 1)$ -transitive.

Corollary

Let *G* be a primitive permutation group on a finite set Ω that contains a 3-cycle. Then *G* is either the symmetric group or the alternating group on Ω .

Corollary

Let *G* be a primitive permutation group on a finite set Ω that contains a 3-cycle. Then *G* is either the symmetric group or the alternating group on Ω .

Proof Sketch

Let (a, b, c) be a 3-cycle contained in *G*. Let $\Lambda = \Omega - \{a, b, c\}$.

From the definition of G_{Λ} we have $(a, b, c) \in G_{\Lambda}$, that implies G_{Λ} is transitive on $\{a, b, c\} = \Omega - \Lambda$.

Since $|\{a, b, c\}| = 3$ is a prime number, we obtain that G_{Λ} is primitive on $\{a, b, c\}$. We have $|\Lambda| \le |\Lambda| + 1 = |\Omega| - 2$, then we have *G* is $(|\Omega| - 2)$ -transitive on Ω .

The only subgroups of $Sym(\Omega)$ that are (n-2)-transitive on Ω are $Sym(\Omega)$ and $Alt(\Omega)$

Lemma

Let x be an n-cycle in S_n . Then $\langle x \rangle = C_{S_n}(x) = \{g \in S_n \mid gx = xg\}.$

Theorem (Jordan)

Let *G* be a primitive permutation group on a finite set Ω . Let *p* be a prime with $p \leq |\Omega| - 3$. If *G* contains a *p*-cycle, then *G* is either the alternating group or the group symmetric.

Theorem (Jordan)

Let *G* be a primitive permutation group on a finite set Ω . Let *p* be a prime with $p \leq |\Omega| - 3$. If *G* contains a *p*-cycle, then *G* is either the alternating group or the group symmetric.

Proof Sketch

Let $|\Omega| = n$ and suppose that $p \neq 3$. Let σ be an *p*-cycle in *G*.

Define $\Lambda := \{ \omega \in \Omega \mid \omega \cdot \sigma = \omega \}.$

We have $|\Omega - \Lambda| = n - |\Lambda| = p$.

Note that $\sigma \in G_{\Lambda}$, then G_{Λ} acts transitively on $\Omega - \Lambda$. Since *p* is a prime number the action is primitive.

Proof Sketch

From Jordan's Theorem *G* is $(|\Lambda| + 1)$ -transitive, that implies *G* is $|\Lambda|$ -transitive.

Each element in *G* induces a permutation in $Sym(\Lambda)$. Thus the natural homomorphism $\rho: G_{(\Lambda)} \to Sym(\Lambda)$ is surjective, and then $Sym(\Lambda) \cong G_{(\Lambda)}/G_{\Lambda}$.

Let $P := \langle \sigma \rangle$. We have |P| = p and $P \subseteq G_{\Lambda}$.

Since G_{Λ} fixes all points in Λ and swaps all points in $\Omega - \Lambda$ we obtain that G_{Λ} acts faithfully on $\Omega - \Lambda$.

Proof Sketch

We have $|G_{\Lambda}|$ divides *p*!. It follows that *P* is a Sylow *p*-subgroup of G_{Λ} .

Observe that $G_{\Lambda} \trianglelefteq G_{(\Lambda)}$, by the Frattini argument $G_{(\Lambda)} = NG_{\Lambda}$, where $N = N_{G_{(\Lambda)}}(P)$.

Also observe that $G_{(\Lambda)}/G_{\Lambda} = NG_{\Lambda}/G_{\Lambda} \cong N/(N \cap G_{\Lambda})$. That implies $Sym(\Lambda) \cong N/N_{\Lambda}$.

Since $|\Lambda| = |\Omega| - p \ge 3$, then Sym (Λ) contains a 3-cycle, and such a 3-cycle must lie in Alt (Λ) .

Proof Sketch

Note that $(N/N_{\Lambda})' = N'N_{\Lambda}/N_{\Lambda} \cong N'/(N' \cap N_{\Lambda})$.

Thus there exists $x \in N'$ such that the permutation induced by x on Λ is a 3-cycle.

We have Aut(P) is abelian.

Define $\rho : N \to \operatorname{Aut}(P)$, where $\rho_n(\sigma) = n^{-1}\sigma n$. Since $\ker \rho = C_N(P)$, then $N/C_N(P) \cong \operatorname{Im} \rho \leq \operatorname{Aut}(P)$ and $N/C_N(P)$ is an abelian group.

Observe that $x \in N' \subseteq C_N(P)$, and so *x* commutes with σ .

Proof Sketch

The permutation of $\Omega - \Lambda$ induced by *x* commutes with a *p*-cycle on these *p* points. The order of this permutation divides *p*.

Since *x* induces a 3-cycle on Λ , and $3 \nmid p$, it follows that x^p also induces a 3-cycle on Λ .

We know that x^p fixes the points of $\Omega - \Lambda$. Since *G* acts faithfully on Ω , x^p is a 3-cycle.

The corollary give us the result.

Application

Theorem (Bochert)

Let Ω be a finite set of cardinality n and let $S = \text{Sym}(\Omega)$. Let $G \leq S$ that is primitive on Ω . If $G \neq \text{Alt}(\Omega)$, then $|S:G| \geq (\frac{n+1}{2})!$.

・ロト・(部)・(言)・(言) 言 の(で 24/27

Application

Theorem (Bochert)

Let Ω be a finite set of cardinality n and let $S = \text{Sym}(\Omega)$. Let $G \leq S$ that is primitive on Ω . If $G \neq \text{Alt}(\Omega)$, then $|S:G| \geq (\frac{n+1}{2})!$.

If *G* a group of permutation that acts primitively in Ω such that $G \neq \text{Sym}(\Omega)$, $\text{Alt}(\Omega)$, then *G* is "small".

Generalizations

Theorem (Neumman, 1975)

Let *G* be a primitive permutation group of degree *n* containing a cycle of length p^r , where $p \neq 3$ is a prime number. If $n > p^r + 2$, then *G* is alternating group or symmetric group.

Generalizations

Theorem (Neumman, 1975)

Let *G* be a primitive permutation group of degree *n* containing a cycle of length p^r , where $p \neq 3$ is a prime number. If $n > p^r + 2$, then *G* is alternating group or symmetric group.

• There is another generalization of the year 2012. This illustrates the importance of the main result of this work.

Bibliography I

John D Dixon and Brian Mortimer. <u>Permutation groups</u>, volume 163. Springer Science & Business Media, 1996.

I Martin Isaacs.

Finite group theory, volume 92. American Mathematical Soc., 2008.

Gareth A Jones.

Primitive permutation groups containing a cycle.

Bulletin of the Australian Mathematical Society, 89(1):159–165, 2012.

Bibliography II

Peter M Neumann.

Primitive permutation groups containing a cycle of prime-power length.

Bulletin of the London Mathematical Society, 7(3):298–299, 1975.

Helmut Wielandt. <u>Finite permutation groups</u>. Academic Press, 1964.