Supersolvable Groups

Teresinha Gouvêa Vanderlei Lopes Wesley Quaresma

UFMG

November/2019

Teresinha Gouvêa, Vanderlei Lopes, Wesley Quaresma Supersolvable Groups

1/40

- A supersolvable group is a group "composed" of cyclic groups, which means that the group has a normal chain with cyclic factors.
- We are going to show some properties of supersolvable groups and their relation with the class of nilpotent groups. As an example, we have the following relations between groups:

- A supersolvable group is a group "composed" of cyclic groups, which means that the group has a normal chain with cyclic factors.
- We are going to show some properties of supersolvable groups and their relation with the class of nilpotent groups. As an example, we have the following relations between groups:

Teresinha Gouvêa, Vanderlei Lopes, Wesley Quaresma Supersolvable Groups

æ

문 ▶ → 문 ▶

• • • • • • • •

Definition

A group G is called supersolvable if it possesses a finite normal series G = G₀ ≥ G₁ ≥ ... ≥ G_n ≥ G_{n+1} = 1, in which each factor group G_i/G_{i+1} is cyclic,
∀ 1 ≤ i ≤ n.

Example

$$G := \langle (1, 2, 3, 4), (1, 3) \rangle \cong D_4$$
 is supersolvable

Consider $G_1 = \langle (1, 2, 3, 4) \rangle$ and $G_2 = \langle (1, 3)(2, 4) \rangle$, then $G = G_0 \ge G_1 \ge G_2 \ge G_3 = 1$ is a normal chain with cyclic factors, which means that D_4 is supersolvable.

Definition

A group G is called supersolvable if it possesses a finite normal series G = G₀ ≥ G₁ ≥ ... ≥ G_n ≥ G_{n+1} = 1, in which each factor group G_i/G_{i+1} is cyclic,
∀ 1 ≤ i ≤ n.

Example

$G := \langle (1, 2, 3, 4), (1, 3) \rangle \cong D_4$ is supersolvable

Consider $G_1 = \langle (1, 2, 3, 4) \rangle$ and $G_2 = \langle (1, 3)(2, 4) \rangle$, then $G = G_0 \ge G_1 \ge G_2 \ge G_3 = 1$ is a normal chain with cyclic factors, which means that D_4 is supersolvable.

Definition

A group G is called supersolvable if it possesses a finite normal series G = G₀ ≥ G₁ ≥ ... ≥ G_n ≥ G_{n+1} = 1, in which each factor group G_i/G_{i+1} is cyclic,
∀ 1 ≤ i ≤ n.

Example

 $G := \langle (1, 2, 3, 4), (1, 3) \rangle \cong D_4$ is supersolvable

Consider $G_1 = \langle (1, 2, 3, 4) \rangle$ and $G_2 = \langle (1, 3)(2, 4) \rangle$, then $G = G_0 \ge G_1 \ge G_2 \ge G_3 = 1$ is a normal chain with cyclic factors, which means that D_4 is supersolvable.

Example

$$S_3 = \langle (1,2,3), (1,2) \rangle$$
 is supersolvable.

・ 目 ト ・ ヨ ト ・

3

Example

$$S_3 = \langle (1,2,3), (1,2) \rangle$$
 is supersolvable.

We can check that $S_3 > A_3 > 1$ is a supersolvable series, then S_3 is supersolvable.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶ …

3

Example

$$S_3 = \langle (1,2,3), (1,2) \rangle$$
 is supersolvable.

We can check that $S_3 \ge A_3 \ge 1$ is a supersolvable series, then S_3 is supersolvable.

Example

Finitely generated abelian groups are supersolvable.

In fact, let $G = \langle g_1, g_2, \dots, g_n \rangle$ be an abelian group and define $G_i = \langle g_i, g_{i+1}, \dots, g_n \rangle$. Since $G_i/G_{i+1} = \langle g_iG_{i+1} \rangle$ and $G_i \leq G, \forall 1 \leq i \leq n$, we have a normal chain $G = G_1 \geq G_2 \geq \dots \geq G_n = 1$ with cyclic factors. Then Gis supersolvable.

Example

$$S_3 = \langle (1,2,3), (1,2) \rangle$$
 is supersolvable.

We can check that $S_3 \ge A_3 \ge 1$ is a supersolvable series, then S_3 is supersolvable.

Example

Finitely generated abelian groups are supersolvable.

In fact, let $G = \langle g_1, g_2, \ldots, g_n \rangle$ be an abelian group and define $G_i = \langle g_i, g_{i+1}, \ldots, g_n \rangle$. Since $G_i/G_{i+1} = \langle g_iG_{i+1} \rangle$ and $G_i \leq G, \forall 1 \leq i \leq n$, we have a normal chain $G = G_1 \geq G_2 \geq \ldots \geq G_n = 1$ with cyclic factors. Then Gis supersolvable.

Example

 A_4 is not a supersolvable group.

In fact, K_4 is the only normal subgroup of A_4 , then it is not supersolvable.

Teresinha Gouvêa, Vanderlei Lopes, Wesley Quaresma Supersolvable Groups

- Notice that supersolvable groups are solvable, since G_i/G_{i+1} is abelian;
- Solvability does not imply supersolvability; For example, S_4 has a solvable chain $S_4 \supseteq A_4 \supseteq K_4 \supseteq 1$, but it has only these normal subgroups, A_4 and K_4 , then it is not supersolvable.

- Notice that supersolvable groups are solvable, since G_i/G_{i+1} is abelian;
- Solvability does not imply supersolvability;
 For example, S₄ has a solvable chain
 S₄ ≥ A₄ ≥ K₄ ≥ 1, but it has only these normal subgroups, A₄ and K₄, then it is not supersolvable.

- Notice that supersolvable groups are solvable, since G_i/G_{i+1} is abelian;
- Solvability does not imply supersolvability;
 For example, S₄ has a solvable chain
 S₄ ≥ A₄ ≥ K₄ ≥ 1, but it has only these normal subgroups, A₄ and K₄, then it is not supersolvable.

Proposition

Supersolvable groups are finitely generated.

Proof.

Proposition

Supersolvable groups are finitely generated.

Proof.

Proposition

Supersolvable groups are finitely generated.

Proof.

Proposition

Supersolvable groups are finitely generated.

Proof.

Proposition

Supersolvable groups are finitely generated.

Proof.

Theorem

Suppose $H \leq G$, $N \leq G$, where G is supersolvable group. Then H and G/N are supersolvable.

Proof

First, we shall prove that H is supersolvable. Consider $G = G_0 \ge G_1 \ge \ldots \ge G_n \ge G_{n+1} = 1$ the supersolvable series of G. Since each $G_i \le G$, defining $H_i = H \cap G_i$ we have $H_i \le H$ and so we get a normal series of H:

$$H = H_0 \ge H_1 \ge \ldots \ge H_n \ge H_{n+1} = 1.$$

Without loss of generality, we may assume that all the factors in the chain above are different.

Theorem

Suppose $H \leq G$, $N \leq G$, where G is supersolvable group. Then H and G/N are supersolvable.

Proof

First, we shall prove that H is supersolvable. Consider $G = G_0 \ge G_1 \ge \ldots \ge G_n \ge G_{n+1} = 1$ the supersolvable series of G. Since each $G_i \trianglelefteq G$, defining $H_i = H \cap G_i$ we have $H_i \trianglelefteq H$ and so we get a normal series of H:

$$H = H_0 \ge H_1 \ge \ldots \ge H_n \ge H_{n+1} = 1.$$

Without loss of generality, we may assume that all the factors in the chain above are different.

Theorem

Suppose $H \leq G$, $N \leq G$, where G is supersolvable group. Then H and G/N are supersolvable.

Proof

First, we shall prove that H is supersolvable. Consider $G = G_0 \ge G_1 \ge \ldots \ge G_n \ge G_{n+1} = 1$ the supersolvable series of G. Since each $G_i \trianglelefteq G$, defining $H_i = H \cap G_i$ we have $H_i \trianglelefteq H$ and so we get a normal series of H:

$$H = H_0 \ge H_1 \ge \ldots \ge H_n \ge H_{n+1} = 1.$$

Without loss of generality, we may assume that all the factors in the chain above are different.

Proof

Analyzing its factors:

$$(H \cap G_i)/(H \cap G_{i+1}) = (H \cap G_i)/((H \cap G_i) \cap G_{i+1})$$
$$\cong (H \cap G_i)G_{i+1}/G_{i+1}$$
$$\leq G_i/G_{i+1}.$$

Since G_i/G_{i+1} is cyclic we have, H_i/H_{i+1} is cyclic and H is supersolvable.

Now, we shall prove that G/N is supersolvable. In fact, since $N \leq G$, the subgroups G_iN are normal in G and so by the Correspondence Theorem we have a normal series of G/N:

Proof

Analyzing its factors:

$$(H \cap G_i)/(H \cap G_{i+1}) = (H \cap G_i)/((H \cap G_i) \cap G_{i+1})$$
$$\cong (H \cap G_i)G_{i+1}/G_{i+1}$$
$$\leq G_i/G_{i+1}.$$

Since G_i/G_{i+1} is cyclic we have, H_i/H_{i+1} is cyclic and H is supersolvable.

Now, we shall prove that G/N is supersolvable. In fact, since $N \leq G$, the subgroups G_iN are normal in G and so by the Correspondence Theorem we have a normal series of G/N:

Proof.

$$G/N = G_0 N/N \ge G_1 N/N \ge \dots$$

 $\ge G_n N/N \ge G_{n+1} N/N = N/N.$

Using the isomorphism theorems:

 $(G_i N/N)/(G_{i+1}N/N) \cong G_i N/G_{i+1}N$ $= G_i G_{i+1}N/G_{i+1}N$ $\cong G_i/(G_i \cap G_{i+1}N)$

Since $G_i/(G_i \cap G_{i+1}N) \leq G_i/G_{i+1}$, then $(G_iN/N)/(G_{i+1}N/N)$ is cyclic. Hence G/N is supersolvable.

Teresinha Gouvêa, Vanderlei Lopes, Wesley Quaresma Supersolvable Groups

11/40

Proof.

$$G/N = G_0 N/N \ge G_1 N/N \ge \dots$$

 $\ge G_n N/N \ge G_{n+1} N/N = N/N.$

Using the isomorphism theorems:

$$(G_i N/N)/(G_{i+1}N/N) \cong G_i N/G_{i+1}N$$
$$= G_i G_{i+1}N/G_{i+1}N$$
$$\cong G_i/(G_i \cap G_{i+1}N)$$

Since $G_i/(G_i \cap G_{i+1}N) \leq G_i/G_{i+1}$, then $(G_iN/N)/(G_{i+1}N/N)$ is cyclic. Hence G/N is supersolvable.

Teresinha Gouvêa, Vanderlei Lopes, Wesley Quaresma Supersolvable Groups

) < (~

Proof.

$$G/N = G_0 N/N \ge G_1 N/N \ge \dots$$

 $\ge G_n N/N \ge G_{n+1} N/N = N/N.$

Using the isomorphism theorems:

$$(G_i N/N)/(G_{i+1}N/N) \cong G_i N/G_{i+1}N$$
$$= G_i G_{i+1}N/G_{i+1}N$$
$$\cong G_i/(G_i \cap G_{i+1}N)$$

Since
$$G_i/(G_i \cap G_{i+1}N) \leq G_i/G_{i+1}$$
, then $(G_iN/N)/(G_{i+1}N/N)$ is cyclic. Hence G/N is supersolvable.

Teresinha Gouvêa, Vanderlei Lopes, Wesley Quaresma Supersolvable Groups

11 / 40

Theorem

The following statements are true:

- A direct product of finitely many supersolvable groups is supersolvable.
- If H₁,..., H_n are normal subgroups of G and the groups G/H₁,..., G/H_n are supersolvable, then G/ ∩ H_i is supersolvable.

Proof

Let us prove the statement 1. By using induction, it is enough to show that if G and K are supersolvable then so is $G \times K$. Consider a supersolvable series $G = G_0 \ge G_1 \ge \ldots \ge G_n \ge G_{n+1} = 1$ and $K = K_0 \ge K_1 \ge \ldots \ge K_m \ge K_{m+1} = 1$ of G and K, respectively. We have $G_i \times 1 = G_i \times K_{m+1} \le G \times K$ and $G \times K_j = G_0 \times K_j \le G \times K$. Furthemore,

 $(G_i \times 1)/(G_{i+1} \times 1) \cong G_i/G_{i+1} \times 1/1 \cong G_i/G_{i+1}$ $(G \times K_j)/(G \times K_{j+1}) \cong G/G \times K_j/K_{j+1} \cong K_j/K_{j+1}.$

Proof

Let us prove the statement 1. By using induction, it is enough to show that if G and K are supersolvable then so is $G \times K$. Consider a supersolvable series $G = G_0 > G_1 > \ldots > G_n > G_{n+1} = 1$ and $K = K_0 > K_1 > \ldots > K_m > K_{m+1} = 1$ of G and K. respectively. We have $G_i \times 1 = G_i \times K_{m+1} \triangleleft G \times K$ and

伺下 イヨト イヨト

Proof

Let us prove the statement 1. By using induction, it is enough to show that if G and K are supersolvable then so is $G \times K$. Consider a supersolvable series $G = G_0 \ge G_1 \ge \ldots \ge G_n \ge G_{n+1} = 1$ and $K = K_0 \ge K_1 \ge \ldots \ge K_m \ge K_{m+1} = 1$ of G and K, respectively. We have $G_i \times 1 = G_i \times K_{m+1} \trianglelefteq G \times K$ and $G \times K_j = G_0 \times K_j \trianglelefteq G \times K$. Furthemore,

 $(G_i \times 1)/(G_{i+1} \times 1) \cong G_i/G_{i+1} \times 1/1 \cong G_i/G_{i+1}$ $(G \times K_j)/(G \times K_{j+1}) \cong G/G \times K_j/K_{j+1} \cong K_j/K_{j+1}.$

Proof

Let us prove the statement 1. By using induction, it is enough to show that if G and K are supersolvable then so is $G \times K$. Consider a supersolvable series $G = G_0 > G_1 > \ldots > G_n > G_{n+1} = 1$ and $K = K_0 > K_1 > \ldots > K_m > K_{m+1} = 1$ of G and K, respectively. We have $G_i \times 1 = G_i \times K_{m+1} \triangleleft G \times K$ and $G \times K_i = G_0 \times K_i \leq G \times K$. Furthemore, $(G_i \times 1)/(G_{i+1} \times 1) \cong G_i/G_{i+1} \times 1/1 \cong G_i/G_{i+1}$

 $(G \times K_j)/(G \times K_{j+1}) \cong G/G \times K_j/K_{j+1} \cong K_j/K_{j+1}.$

Proof

Let us prove the statement 1. By using induction, it is enough to show that if G and K are supersolvable then so is $G \times K$. Consider a supersolvable series $G = G_0 > G_1 > \ldots > G_n > G_{n+1} = 1$ and $K = K_0 > K_1 > \ldots > K_m > K_{m+1} = 1$ of G and K. respectively. We have $G_i \times 1 = G_i \times K_{m+1} \triangleleft G \times K$ and $G \times K_i = G_0 \times K_i \leq G \times K$. Furthemore, $(G_i \times 1)/(G_{i+1} \times 1) \cong G_i/G_{i+1} \times 1/1 \cong G_i/G_{i+1}$ $(G \times K_j)/(G \times K_{j+1}) \cong G/G \times K_j/K_{j+1} \cong K_j/K_{j+1}.$

・ 同 ト ・ ヨ ト ・ ヨ ト

Proof.

$$G \times K = G_0 \times K_0 \ge G \times K_1 \ge \dots \ge G \times K_m \ge G \times K_{m+1}$$
$$= G \times 1 \ge G_1 \times 1 \ge \dots \ge G_{n+1} \times 1 = 1 \times 1$$

is a supersolvable series of $G \times K$.

For the statement 2, consider the homomorphism

$$\phi: G \longrightarrow \prod_{i=1}^{n} G/H_i, \ g \mapsto (gH_1, \dots, gH_n)$$

ose kernel is $\bigcap^{n} H_i$. It follows that $G/\bigcap^{n} H_i \cong \prod^{n} G/H_i$

which is a supersolvable group by the statement 1.

Proof.

$$G \times K = G_0 \times K_0 \ge G \times K_1 \ge \dots \ge G \times K_m \ge G \times K_{m+1}$$
$$= G \times 1 \ge G_1 \times 1 \ge \dots \ge G_{n+1} \times 1 = 1 \times 1$$

is a supersolvable series of $G \times K$. For the statement 2, consider the homomorphism

$$\phi: G \longrightarrow \prod_{i=1}^{n} G/H_i, \ g \mapsto (gH_1, \dots, gH_n)$$

whose kernel is $\bigcap_{i=1}^{n} H_i$. It follows that $G / \bigcap_{i=1}^{n} H_i \cong \prod_{i=1}^{n} G / H_i$ which is a supersolvable group by the statement 1.
Proof.

$$G \times K = G_0 \times K_0 \ge G \times K_1 \ge \dots \ge G \times K_m \ge G \times K_{m+1}$$
$$= G \times 1 \ge G_1 \times 1 \ge \dots \ge G_{n+1} \times 1 = 1 \times 1$$

is a supersolvable series of $G \times K$. For the statement 2, consider the homomorphism

$$\phi: G \longrightarrow \prod_{i=1}^{n} G/H_i, \ g \mapsto (gH_1, \dots, gH_n)$$

whose kernel is $\bigcap_{i=1}^{n} H_i$. It follows that $G / \bigcap_{i=1}^{n} H_i \cong \prod_{i=1}^{n} G / H_i$ which is a supersolvable group by the statement 1.

Corollary

Supersolvable groups satisfy the maximal condition of chains of subgroups.

Proof

Let G be a supersolvable group and suppose that it has a infinite series of subgroups

$$H_0 \le H_1 \le \ldots \le H_n \le \ldots$$

Since subgroups of supersolvable groups are supersolvable then all subgroups of G are finitely generated. In particular $\bigcup_{i=0}^{\infty} H_i \leq G$ is finitely generated.

Corollary

Supersolvable groups satisfy the maximal condition of chains of subgroups.

Proof

Let G be a supersolvable group and suppose that it has a infinite series of subgroups

$$H_0 \leq H_1 \leq \ldots \leq H_n \leq \ldots$$

Since subgroups of supersolvable groups are supersolvable then all subgroups of G are finitely generated. In particular $\bigcup_{i=0}^{\infty} H_i \leq G$ is finitely generated.

Corollary

Supersolvable groups satisfy the maximal condition of chains of subgroups.

Proof

Let G be a supersolvable group and suppose that it has a infinite series of subgroups

$$H_0 \le H_1 \le \ldots \le H_n \le \ldots$$

Since subgroups of supersolvable groups are supersolvable then all subgroups of G are finitely generated. In particular $\bigcup_{i=0}^{\infty} H_i \leq G \text{ is finitely generated.}$

Proof.

Assume it is generated by $\{x_1, \ldots, x_k\}$ then there exists $m \in \mathbb{N}$ such that $\{x_1, \ldots, x_k\} \subseteq H_m$ which means $\bigcup_{i=0}^{\infty} H_i \subseteq H_m$, a contradiction.

- We know that all nilpotent groups are solvable;
- Supersolvability (then solvable) does not imply nilpotence (Consider S_3);
- Nilpotence does not imply supersolvability (Consider (Q, +)).

Proof.

Assume it is generated by $\{x_1, \ldots, x_k\}$ then there exists $m \in \mathbb{N}$ such that $\{x_1, \ldots, x_k\} \subseteq H_m$ which means $\bigcup_{i=0}^{\infty} H_i \subseteq H_m$, a contradiction.

- We know that all nilpotent groups are solvable;
- Supersolvability (then solvable) does not imply nilpotence (Consider S_3);
- Nilpotence does not imply supersolvability (Consider (Q, +)).

Proof.

Assume it is generated by $\{x_1, \ldots, x_k\}$ then there exists $m \in \mathbb{N}$ such that $\{x_1, \ldots, x_k\} \subseteq H_m$ which means $\bigcup_{i=0}^{\infty} H_i \subseteq H_m$, a contradiction.

- We know that all nilpotent groups are solvable;
- Supersolvability (then solvable) does not imply nilpotence (Consider S₃);
- Nilpotence does not imply supersolvability (Consider (Q, +)).

Proof.

Assume it is generated by $\{x_1, \ldots, x_k\}$ then there exists $m \in \mathbb{N}$ such that $\{x_1, \ldots, x_k\} \subseteq H_m$ which means $\bigcup_{i=0}^{\infty} H_i \subseteq H_m$, a contradiction.

- We know that all nilpotent groups are solvable;
- Supersolvability (then solvable) does not imply nilpotence (Consider S₃);
- Nilpotence does not imply supersolvability (Consider (Q, +)).

Proof.

Assume it is generated by $\{x_1, \ldots, x_k\}$ then there exists $m \in \mathbb{N}$ such that $\{x_1, \ldots, x_k\} \subseteq H_m$ which means $\bigcup_{i=0}^{\infty} H_i \subseteq H_m$, a contradiction.

- We know that all nilpotent groups are solvable;
- Supersolvability (then solvable) does not imply nilpotence (Consider S₃);
- Nilpotence does not imply supersolvability (Consider (Q, +)).

Proposition

If G is a finitely generated nilpotent group, then G is supersolvable.

Proof

Consider a upper central series $1 = \zeta_0 \leq \zeta_1 \leq \cdots \leq \zeta_c \leq \zeta_{c+1} = G$, where $\zeta_i \leq G$ and $\frac{\zeta_{i+1}}{\zeta_i} \leq Z\left(\frac{G}{\zeta_i}\right)$. Notice that ζ_{i+1}/ζ_i is abelian and finitely generated, thus we have it is a direct product of cyclic groups

$$\frac{\zeta_{i+1}}{\zeta_i} = \frac{C_{i_1}}{\zeta_i} \times \frac{C_{i_2}}{\zeta_i} \times \dots \times \frac{C_{i_k}}{\zeta_i}.$$

Proposition

If G is a finitely generated nilpotent group, then G is supersolvable.

Proof

Consider a upper central series

 $1 = \zeta_0 \leq \zeta_1 \leq \cdots \leq \zeta_c \leq \zeta_{c+1} = G$, where $\zeta_i \leq G$ and $\frac{\zeta_{i+1}}{\zeta_i} \leq Z\left(\frac{G}{\zeta_i}\right)$. Notice that ζ_{i+1}/ζ_i is abelian and finitely generated, thus we have it is a direct product of cyclic groups

3

Proposition

If G is a finitely generated nilpotent group, then G is supersolvable.

Proof

Consider a upper central series

 $1 = \zeta_0 \leq \zeta_1 \leq \cdots \leq \zeta_c \leq \zeta_{c+1} = G$, where $\zeta_i \leq G$ and $\frac{\zeta_{i+1}}{\zeta_i} \leq Z\left(\frac{G}{\zeta_i}\right)$. Notice that ζ_{i+1}/ζ_i is abelian and finitely generated, thus we have it is a direct product of cyclic groups

$$\frac{\zeta_{i+1}}{\zeta_i} = \frac{C_{i_1}}{\zeta_i} \times \frac{C_{i_2}}{\zeta_i} \times \dots \times \frac{C_{i_k}}{\zeta_i}.$$

Proof.

Since
$$\frac{\zeta_{i+1}}{\zeta_i} \leq Z\left(\frac{G}{\zeta_i}\right)$$
 we know that $\frac{C_{i_j}}{\zeta_i} \leq \frac{G}{\zeta_i}$, which implies $C_{i_j} \leq G$. Thus we can refine the series in this way $1 \leq \ldots \leq \zeta_i \leq C_{i_1} \leq C_{i_1} C_{i_2} \leq \ldots$ $\ldots \leq C_{i_1} C_{i_2} \cdots C_{i_k} = \zeta_{i+1} \leq \ldots \leq G$.

The previous proposition show us directly that all finite p-groups and finitely generated abelian groups are supersolvable.

Teresinha Gouvêa, Vanderlei Lopes, Wesley Quaresma Supersolvable Groups

Proof.

Since
$$\frac{\zeta_{i+1}}{\zeta_i} \leq Z\left(\frac{G}{\zeta_i}\right)$$
 we know that $\frac{C_{i_j}}{\zeta_i} \leq \frac{G}{\zeta_i}$, which implies $C_{i_j} \leq G$. Thus we can refine the series in this way $1 \leq \ldots \leq \zeta_i \leq C_{i_1} \leq C_{i_1} C_{i_2} \leq \ldots$

$$\ldots \leq C_{i_1}C_{i_2}\cdots C_{i_k} = \zeta_{i+1} \leq \ldots \leq G.$$

The previous proposition show us directly that all finite p-groups and finitely generated abelian groups are supersolvable.

Proof.

Since
$$\frac{\zeta_{i+1}}{\zeta_i} \leq Z\left(\frac{G}{\zeta_i}\right)$$
 we know that $\frac{C_{i_j}}{\zeta_i} \leq \frac{G}{\zeta_i}$, which implies $C_{i_j} \leq G$. Thus we can refine the series in this way $1 \leq \ldots \leq \zeta_i \leq C_{i_1} \leq C_{i_1} C_{i_2} \leq \ldots$ $\ldots \leq C_{i_1} C_{i_2} \cdots C_{i_k} = \zeta_{i+1} \leq \ldots \leq G.$

The previous proposition show us directly that all finite p-groups and finitely generated abelian groups are supersolvable.

Teresinha Gouvêa, Vanderlei Lopes, Wesley Quaresma Supersolvable Groups

Proof.

Since
$$\frac{\zeta_{i+1}}{\zeta_i} \leq Z\left(\frac{G}{\zeta_i}\right)$$
 we know that $\frac{C_{i_j}}{\zeta_i} \leq \frac{G}{\zeta_i}$, which implies $C_{i_j} \leq G$. Thus we can refine the series in this way $1 \leq \ldots \leq \zeta_i \leq C_{i_1} \leq C_{i_1} C_{i_2} \leq \ldots$ $\ldots \leq C_{i_1} C_{i_2} \cdots C_{i_k} = \zeta_{i+1} \leq \ldots \leq G.$

The previous proposition show us directly that all finite *p*-groups and finitely generated abelian groups are supersolvable.

It is not true that $N \leq G$ and G/N supersolvable implies G supersolvable. For example, A_4 is not supersolvable, but K_4 and $A_4/K_4 \cong C_3$ are supersolvable.

Definition

Let G be a group and $N \leq G$. We say that N is G-supersolvable if N has a supersolvable series $N = N_0 \geq N_1 \geq \ldots \geq N_n \geq N_{n+1} = 1$ with $N_i \leq G$, for all $0 \leq i \leq n+1$. It is not true that $N \leq G$ and G/N supersolvable implies G supersolvable. For example, A_4 is not supersolvable, but K_4 and $A_4/K_4 \cong C_3$ are supersolvable.

Definition

Let G be a group and $N \leq G$. We say that N is G-supersolvable if N has a supersolvable series $N = N_0 \geq N_1 \geq \ldots \geq N_n \geq N_{n+1} = 1$ with $N_i \leq G$, for all $0 \leq i \leq n+1$. It is not true that $N \leq G$ and G/N supersolvable implies G supersolvable. For example, A_4 is not supersolvable, but K_4 and $A_4/K_4 \cong C_3$ are supersolvable.

Definition

Let G be a group and $N \leq G$. We say that N is G-supersolvable if N has a supersolvable series $N = N_0 \geq N_1 \geq \ldots \geq N_n \geq N_{n+1} = 1$ with $N_i \leq G$, for all $0 \leq i \leq n+1$.

Proposition

Let $N \leq G$. If N is G-supersolvable and G/N is supersolvable then G is supersolvable.

Proof

In fact, applying the Correspondence Theorem to a supersolvable series of G/N we can write

 $G/N = G_0/N \ge G_1/N \ge \ldots \ge G_n/N \ge G_{n+1}/N = N/N,$

where each G_i is normal in G with $N \leq G_i$. We get that

$$G = G_0 \ge G_1 \ge \ldots \ge G_n \ge N$$

is a normal series of G from G up to N.

Proposition

Let $N \leq G$. If N is G-supersolvable and G/N is supersolvable then G is supersolvable.

Proof

In fact, applying the Correspondence Theorem to a supersolvable series of G/N we can write

 $G/N = G_0/N \ge G_1/N \ge \ldots \ge G_n/N \ge G_{n+1}/N = N/N,$

where each G_i is normal in G with $N \leq G_i$. We get that

 $G = G_0 \ge G_1 \ge \ldots \ge G_n \ge N$

is a normal series of G from G up to N.

Proposition

Let $N \leq G$. If N is G-supersolvable and G/N is supersolvable then G is supersolvable.

Proof

In fact, applying the Correspondence Theorem to a supersolvable series of G/N we can write

$$G/N = G_0/N \ge G_1/N \ge \ldots \ge G_n/N \ge G_{n+1}/N = N/N,$$

where each G_i is normal in G with $N \leq G_i$. We get that

$$G = G_0 \ge G_1 \ge \ldots \ge G_n \ge N$$

is a normal series of G from G up to N.

Proof.

Since N is G-supersolvable we have

$$N = N_0 \ge N_1 \ge \ldots \ge N_r \ge N_{r+1} = 1$$

a supersolvable series of N with each N_i normal in G. Therefore,

$$G = G_0 \ge G_1 \ge \ldots \ge G_n \ge N \ge N_1 \ge \ldots$$
$$\ldots \ge N_r \ge N_{r+1} = 1$$

is the desired supersolvable series of G.

Proof.

Since N is G-supersolvable we have

$$N = N_0 \ge N_1 \ge \ldots \ge N_r \ge N_{r+1} = 1$$

a supersolvable series of N with each N_i normal in G. Therefore,

$$G = G_0 \ge G_1 \ge \ldots \ge G_n \ge N \ge N_1 \ge \ldots$$
$$\ldots \ge N_r \ge N_{r+1} = 1$$

is the desired supersolvable series of G.

Proposition

If G is a supersolvable group and $N \leq G$, then N occurs as a term in a supersolvable series of G.

Proof

As the quotient G/N is supersolvable, using the Correspondence Theorem we can get a normal series of Gfrom G up to N:

$$G = G_0 \ge G_1 \ge \ldots \ge G_n \ge N$$

where G_{i+1}/G_i is cyclic. Take $G = H_0 \ge H_1 \ge \ldots \ge H_r \ge H_{r+1} = 1$ a supersolvable series of G and define $N_i = H_i \cap N$.

Proposition

If G is a supersolvable group and $N \leq G$, then N occurs as a term in a supersolvable series of G.

Proof

As the quotient G/N is supersolvable, using the Correspondence Theorem we can get a normal series of Gfrom G up to N:

$$G = G_0 \ge G_1 \ge \ldots \ge G_n \ge N$$

where G_{i+1}/G_i is cyclic.

Take $G = H_0 \ge H_1 \ge \ldots \ge H_r \ge H_{r+1} = 1$ a supersolvable series of G and define $N_i = H_i \cap N$.

Proposition

If G is a supersolvable group and $N \leq G$, then N occurs as a term in a supersolvable series of G.

Proof

As the quotient G/N is supersolvable, using the Correspondence Theorem we can get a normal series of Gfrom G up to N:

$$G = G_0 \ge G_1 \ge \ldots \ge G_n \ge N$$

where G_{i+1}/G_i is cyclic. Take $G = H_0 \ge H_1 \ge \ldots \ge H_r \ge H_{r+1} = 1$ a supersolvable series of G and define $N_i = H_i \cap N$.

Proof.

Since a supersolvable group is closed to subgroups we get $N = N_0 \ge N_1 \ge \ldots \ge N_r \ge N_{r+1} = 1$ supersolvable series of N. Then N occurs in the following supersolvable series of G:

 $G = G_0 \ge G_1 \ge \ldots \ge G_n \ge N \ge N_1 \ge \ldots \ge N_{r+1} = 1.$

In particular, the previous propositions says that if N is a normal cyclic subgroup of G with G/N supersolvable, then G is supersolvable.

An immediate consequence of proposition is that normal subgroups of a supersolvable group G are G, supersolvable.

Teresinha Gouvêa, Vanderlei Lopes, Wesley Quaresma Supersolvable Groups

Proof.

Since a supersolvable group is closed to subgroups we get $N = N_0 \ge N_1 \ge \ldots \ge N_r \ge N_{r+1} = 1$ supersolvable series of N. Then N occurs in the following supersolvable series of G:

$$G = G_0 \ge G_1 \ge \ldots \ge G_n \ge N \ge N_1 \ge \ldots \ge N_{r+1} = 1.$$

In particular, the previous propositions says that if N is a normal cyclic subgroup of G with G/N supersolvable, then G is supersolvable.

An immediate consequence of proposition is that normal subgroups of a supersolvable group G are G are G are g and g and g are g are g and g are g are g are g are g are g are g and g are g

23/40

Teresinha Gouvêa, Vanderlei Lopes, Wesley Quaresma Supersolvable Groups

Proof.

Since a supersolvable group is closed to subgroups we get $N = N_0 \ge N_1 \ge \ldots \ge N_r \ge N_{r+1} = 1$ supersolvable series of N. Then N occurs in the following supersolvable series of G:

$$G = G_0 \ge G_1 \ge \ldots \ge G_n \ge N \ge N_1 \ge \ldots \ge N_{r+1} = 1.$$

In particular, the previous propositions says that if N is a normal cyclic subgroup of G with G/N supersolvable, then G is supersolvable.

An immediate consequence of proposition is that normal subgroups of a supersolvable group G are G are G are g and g and g are G

23/40

Proof.

Since a supersolvable group is closed to subgroups we get $N = N_0 \ge N_1 \ge \ldots \ge N_r \ge N_{r+1} = 1$ supersolvable series of N. Then N occurs in the following supersolvable series of G:

$$G = G_0 \ge G_1 \ge \ldots \ge G_n \ge N \ge N_1 \ge \ldots \ge N_{r+1} = 1.$$

In particular, the previous propositions says that if N is a normal cyclic subgroup of G with G/N supersolvable, then G is supersolvable.

An immediate consequence of proposition is that normal subgroups of a supersolvable group G are G-supersolvable.

Lemma

- Every subgroup of an infinite cyclic group different from the identity is an infinite cyclic group of finite index, and there is a unique subgroup for each finite index.
- Every subgroup of a finite cyclic group of order n is a cyclic group of order dividing n, and there is a unique subgroup of each order dividing n.

Theorem

A supersolvable group G has a normal series $G = G_0 \ge G_1 \ge \ldots \ge G_n \ge G_{n+1} = 1$ in which every factor group G_i/G_{i+1} is either infinite cyclic or cyclic of prime order.

Proof

Let G be supersolvable with supersolvable series $G = G_0 \ge G_1 \ge \ldots \ge G_n \ge G_{n+1} = 1$. If G_i/G_{i+1} is cyclic of finite order $p_1p_2 \cdots p_s$ where p_1, \ldots, p_s are primes (not necessarily distinct) then, by the previous lemma, G_i/G_{i+1} has only one subgroup $H_{i1}/G_{i+1}, \ldots, H_{is}/G_{i+1}$ of order $p_1p_2 \cdots p_s, p_2 \cdots p_s, \ldots, p_s$ respectively.

Theorem

A supersolvable group G has a normal series $G = G_0 \ge G_1 \ge \ldots \ge G_n \ge G_{n+1} = 1$ in which every factor group G_i/G_{i+1} is either infinite cyclic or cyclic of prime order.

Proof

Let G be supersolvable with supersolvable series $G = G_0 \ge G_1 \ge \ldots \ge G_n \ge G_{n+1} = 1$. If G_i/G_{i+1} is cyclic of finite order $p_1p_2\cdots p_s$ where p_1,\ldots,p_s are primes (not necessarily distinct) then, by the previous lemma, G_i/G_{i+1} has only one subgroup $H_{i1}/G_{i+1},\ldots,H_{is}/G_{i+1}$ of order $p_1p_2\cdots p_s, p_2\cdots p_s,\ldots,p_s$ respectively.

Proof.

Since H_{ij}/G_{i+1} is a characteristic subgroup of $G_i/G_{i+1} \trianglelefteq G/G_{i+1}$ we have $H_{ij}/G_{i+1} \trianglelefteq G/G_{i+1}$ then $H_{ij} \trianglelefteq G$. Hence, we can refine our series as below

$$G = G_0 \ge G_1 \ge \ldots \ge G_i \ge H_{i\,1} \ge \ldots$$
$$\ldots \ge H_{i\,s} \ge G_{i+1} \ge \ldots \ge G_n \ge G_{n+1} = 1$$

Notice, by the Isomorphism Theorem that $H_{ij}/H_{i,j+1} \cong \frac{H_{ij}/G_{i+1}}{H_{i,j+1}/G_{i+1}}$. Then $|H_{ij}/H_{i,j+1}| = p_j$. If we repeat this process for all $0 \le i \le n+1$ we get a normal series of G with infinite cyclic factors or cyclic of prime order.

Proof.

Since H_{ij}/G_{i+1} is a characteristic subgroup of $G_i/G_{i+1} \trianglelefteq G/G_{i+1}$ we have $H_{ij}/G_{i+1} \trianglelefteq G/G_{i+1}$ then $H_{ij} \trianglelefteq G$. Hence, we can refine our series as below

$$G = G_0 \ge G_1 \ge \ldots \ge G_i \ge H_{i1} \ge \ldots$$
$$\ldots \ge H_{is} \ge G_{i+1} \ge \ldots \ge G_n \ge G_{n+1} = 1.$$

Notice, by the Isomorphism Theorem that $H_{ij}/H_{i,j+1} \cong \frac{H_{ij}/G_{i+1}}{H_{i,j+1}/G_{i+1}}$. Then $|H_{ij}/H_{i,j+1}| = p_j$. If we repeat this process for all $0 \le i \le n+1$ we get a normal series of G with infinite cyclic factors or cyclic of prime order.
Proof.

Since H_{ij}/G_{i+1} is a characteristic subgroup of $G_i/G_{i+1} \trianglelefteq G/G_{i+1}$ we have $H_{ij}/G_{i+1} \trianglelefteq G/G_{i+1}$ then $H_{ij} \trianglelefteq G$. Hence, we can refine our series as below

$$G = G_0 \ge G_1 \ge \ldots \ge G_i \ge H_{i1} \ge \ldots$$
$$\ldots \ge H_{is} \ge G_{i+1} \ge \ldots \ge G_n \ge G_{n+1} = 1.$$

Notice, by the Isomorphism Theorem that $H_{ij}/H_{i,j+1} \cong \frac{H_{ij}/G_{i+1}}{H_{i,j+1}/G_{i+1}}$. Then $|H_{ij}/H_{i,j+1}| = p_j$. If we repeat this process for all $0 \le i \le n+1$ we get a normal series of G with infinite cyclic factors or cyclic of prime order.

Proof.

Since H_{ij}/G_{i+1} is a characteristic subgroup of $G_i/G_{i+1} \trianglelefteq G/G_{i+1}$ we have $H_{ij}/G_{i+1} \trianglelefteq G/G_{i+1}$ then $H_{ij} \trianglelefteq G$. Hence, we can refine our series as below

$$G = G_0 \ge G_1 \ge \ldots \ge G_i \ge H_{i1} \ge \ldots$$
$$\ldots \ge H_{is} \ge G_{i+1} \ge \ldots \ge G_n \ge G_{n+1} = 1.$$

Notice, by the Isomorphism Theorem that $H_{ij}/H_{i,j+1} \cong \frac{H_{ij}/G_{i+1}}{H_{i,j+1}/G_{i+1}}$. Then $|H_{ij}/H_{i,j+1}| = p_j$. If we repeat this process for all $0 \le i \le n+1$ we get a normal series of G with infinite cyclic factors or cyclic of prime order. Moreover, we can refine our supersolvable series with infinite cyclic factors or cyclic of prime order, and if G_{i-1}/G_i and G_i/G_{i+1} are of prime orders p_i and p_{i+1} we have $p_i \leq p_{i+1}$.

Corollary

A supersolvable group has a cyclic normal subgroup of infinite or prime order.

Corollary

A simple supersolvable group is cyclic of prime order.

Moreover, we can refine our supersolvable series with infinite cyclic factors or cyclic of prime order, and if G_{i-1}/G_i and G_i/G_{i+1} are of prime orders p_i and p_{i+1} we have $p_i \leq p_{i+1}$.

Corollary

A supersolvable group has a cyclic normal subgroup of infinite or prime order.

Corollary

A simple supersolvable group is cyclic of prime order.

Moreover, we can refine our supersolvable series with infinite cyclic factors or cyclic of prime order, and if G_{i-1}/G_i and G_i/G_{i+1} are of prime orders p_i and p_{i+1} we have $p_i \leq p_{i+1}$.

Corollary

A supersolvable group has a cyclic normal subgroup of infinite or prime order.

Corollary

A simple supersolvable group is cyclic of prime order.

Definition

A chief factor of G is a quotient H/K where $H, K \leq G$ and H/K is a minimal normal subgroup of G/K. A chief series of G is a normal series whose factors are chief.

Teresinha Gouvêa, Vanderlei Lopes, Wesley Quaresma Supersolvable Groups

28/40

Proposition

- A minimal normal subgroup of a supersolvable group is cyclic of prime order.
- A chief factor of a supersolvable group is cyclic of prime order.
- A supersolvable group with a chief series is a finite group.
- G is a finite supersolvable group if and only if it has a chief series with cyclic factors of prime order.

Proposition

- A minimal normal subgroup of a supersolvable group is cyclic of prime order.
- A chief factor of a supersolvable group is cyclic of prime order.
- A supersolvable group with a chief series is a finite group.
- G is a finite supersolvable group if and only if it has a chief series with cyclic factors of prime order.

Proposition

- A minimal normal subgroup of a supersolvable group is cyclic of prime order.
- A chief factor of a supersolvable group is cyclic of prime order.
- A supersolvable group with a chief series is a finite group.
- G is a finite supersolvable group if and only if it has a chief series with cyclic factors of prime order.

Proposition

- A minimal normal subgroup of a supersolvable group is cyclic of prime order.
- A chief factor of a supersolvable group is cyclic of prime order.
- A supersolvable group with a chief series is a finite group.
- G is a finite supersolvable group if and only if it has a chief series with cyclic factors of prime order.

Proposition

- A minimal normal subgroup of a supersolvable group is cyclic of prime order.
- A chief factor of a supersolvable group is cyclic of prime order.
- A supersolvable group with a chief series is a finite group.
- G is a finite supersolvable group if and only if it has a chief series with cyclic factors of prime order.

Proof

- Let N be a minimal normal subgroup of G. N is G-supersolvable. By minimality, N is simple.
 Applying a previous Corollary, we have that N is cyclic of prime order.
- If H/K is a chief factor of G, then H/K is a minimal normal subgroup of G/K. Quotient groups of G are supersolvable and thus by 1, H/K has prime order.

Proof

- Let N be a minimal normal subgroup of G. N is G-supersolvable. By minimality, N is simple.
 Applying a previous Corollary, we have that N is cyclic of prime order.
- If H/K is a chief factor of G, then H/K is a minimal normal subgroup of G/K. Quotient groups of G are supersolvable and thus by 1, H/K has prime order.

Proof.

• If G has a chief series $G = G_0 \ge G_1 \ge \ldots \ge G_n \ge G_{n+1} = 1$, then each factor G_i/G_{i+1} is finite by 2. But $|G| = \prod_{i=0}^n |G_i/G_{i+1}|$ and so G must be finite.

• Finally, note that a finite group has chief series and thus a finite supersolvable group has a chief series with cyclic of prime order factors by 1. Conversely, a chief series with cyclic factors is a normal series with cyclic factors and hence is a supersolvable series.

Proof.

• If G has a chief series $G = G_0 \ge G_1 \ge \ldots \ge G_n \ge G_{n+1} = 1$, then each factor G_i/G_{i+1} is finite by 2. But $|G| = \prod_{i=0}^n |G_i/G_{i+1}|$ and so G must be finite.

• Finally, note that a finite group has chief series and thus a finite supersolvable group has a chief series with cyclic of prime order factors by 1. Conversely, a chief series with cyclic factors is a normal series with cyclic factors and hence is a supersolvable series.

Theorem

Let G be a supersolvable group. Then all maximal subgroups of G has prime index.

Proof

Consider $H \leq G$. If $H \leq G$, G/H is a simple and supersolvable group, therefore G/H is a cyclic group with prime order, then [G:H] is prime. Now, suppose that H is not a normal subgroup of G. Let K be the maximal subgroup of H that is normal in G; we have that $H/K \leq G/K$ and $[G:H] = \begin{bmatrix} G \\ K \end{bmatrix}$, thus we may assume that K = 1, without loss of generality.

э

- ロト - (四下 - (日下 - (日下

Theorem

Let G be a supersolvable group. Then all maximal subgroups of G has prime index.

Proof

Consider $H \leq G$. If $H \leq G$, G/H is a simple and supersolvable group, therefore G/H is a cyclic group with prime order, then [G:H] is prime. Now, suppose that H is not a normal subgroup of G. Let K be the maximal subgroup of H that is normal in G; we have that $H/K \leq G/K$ and $[G:H] = \begin{bmatrix} G \\ K \end{bmatrix}$, thus we may assume that K = 1, without loss of generality.

э

- ロト - (四下 - (日下 - (日下

Theorem

Let G be a supersolvable group. Then all maximal subgroups of G has prime index.

Proof

Consider $H \leq G$. If $H \leq G$, G/H is a simple and supersolvable group, therefore G/H is a cyclic group with prime order, then [G:H] is prime. Now, suppose that H is not a normal subgroup of G. Let K be the maximal subgroup of H that is normal in G; we have that $H/K \leq G/K$ and $[G:H] = \begin{bmatrix} G \\ K \end{bmatrix}$, thus we may assume that K = 1, without loss of generality.

э

- ロト - (四下 - (日下 - (日下

Theorem

Let G be a supersolvable group. Then all maximal subgroups of G has prime index.

Proof

Consider $H \leq G$. If $H \leq G$, G/H is a simple and supersolvable group, therefore G/H is a cyclic group with prime order, then [G:H] is prime. Now, suppose that H is not a normal subgroup of G. Let K be the maximal subgroup of H that is normal in G; we have that $H/K \leq G/K$ and $[G:H] = \begin{bmatrix} G \\ K \end{bmatrix}$, thus we may assume that K = 1, without loss of generality.

< 4 ∰ ▶ < 4

Proof

Since G is supersolvable, we conclude that G has a normal subgroup A, which is infinite cyclic or cyclic of prime order.

<u>୬</u>ବ୍ ୯

Proof

Since G is supersolvable, we conclude that G has a normal subgroup A, which is infinite cyclic or cyclic of prime order. If A is infinite cyclic then $A \cong \mathbb{Z}$; since $Aut(\mathbb{Z}) \cong \mathbb{Z}_2$, all subgroups of \mathbb{Z} are characteristic.

Since $A \cap H \leq A$, then $A \cap H \leq G$ therefore $A \cap H = 1$ because of K = 1 is the biggest subgroup with this property. Moreover, we can choose B a proper subgroup of A that is normal in G. Then we have H < AH and, by the maximality of H, AH = G. However, this means that H < BH < AH = G, which contradicts the maximality of H.

Proof

Since G is supersolvable, we conclude that G has a normal subgroup A, which is infinite cyclic or cyclic of prime order. If A is infinite cyclic then $A \cong \mathbb{Z}$; since $Aut(\mathbb{Z}) \cong \mathbb{Z}_2$, all subgroups of \mathbb{Z} are characteristic. Since $A \cap H \leq A$, then $A \cap H \leq G$ therefore $A \cap H = 1$ because of K = 1 is the biggest subgroup with this **property.** Moreover, we can choose B a proper subgroup of

Proof

Since G is supersolvable, we conclude that G has a normal subgroup A, which is infinite cyclic or cyclic of prime order. If A is infinite cyclic then $A \cong \mathbb{Z}$; since $Aut(\mathbb{Z}) \cong \mathbb{Z}_2$, all subgroups of \mathbb{Z} are characteristic. Since $A \cap H \leq A$, then $A \cap H \leq G$ therefore $A \cap H = 1$ because of K = 1 is the biggest subgroup with this property. Moreover, we can choose B a proper subgroup of A that is normal in G. Then we have H < AH and, by the

Proof

Since G is supersolvable, we conclude that G has a normal subgroup A, which is infinite cyclic or cyclic of prime order. If A is infinite cyclic then $A \cong \mathbb{Z}$; since $Aut(\mathbb{Z}) \cong \mathbb{Z}_2$, all subgroups of \mathbb{Z} are characteristic. Since $A \cap H \leq A$, then $A \cap H \leq G$ therefore $A \cap H = 1$ because of K = 1 is the biggest subgroup with this property. Moreover, we can choose B a proper subgroup of A that is normal in G. Then we have H < AH and, by the maximality of H, AH = G. However, this means that

Proof

Since G is supersolvable, we conclude that G has a normal subgroup A, which is infinite cyclic or cyclic of prime order. If A is infinite cyclic then $A \cong \mathbb{Z}$; since $Aut(\mathbb{Z}) \cong \mathbb{Z}_2$, all subgroups of \mathbb{Z} are characteristic. Since $A \cap H \leq A$, then $A \cap H \leq G$ therefore $A \cap H = 1$ because of K = 1 is the biggest subgroup with this property. Moreover, we can choose B a proper subgroup of A that is normal in G. Then we have H < AH and, by the maximality of H, AH = G. However, this means that H < BH < AH = G, which contradicts the maximality of H.

Proof.

Thus A has prime order. Then we have

$$[G:H] = [AH:H] = [A:A \cap H] = [A:1] = |A|$$

This means that H has prime index.

The next result assures us the reciprocal of the previous theorem in the finite case.

Theorem (Huppert)

Suppose G is a finite group with the property that all its maximal subgroups are of prime index. Then G is supersolvable.

Theorem

Let G be a supersolvable group; then the commutator subgroup G' of G is nilpotent.

Proof

Theorem

Let G be a supersolvable group; then the commutator subgroup G' of G is nilpotent.

Proof

Let $G = G_0 > G_1 > \ldots > G_n > G_{n+1} = 1$ be a supersolvable series. Defining $H_i := G' \cap G_i$, as we have

Theorem

Let G be a supersolvable group; then the commutator subgroup G' of G is nilpotent.

Proof

Let $G = G_0 > G_1 > \ldots > G_n > G_{n+1} = 1$ be a supersolvable series. Defining $H_i := G' \cap G_i$, as we have already observed, $G' = H_0 \ge H_1 \ge \ldots \ge H_{n+1} = 1$ is a supersolvable series for G' and moreover, $H_i \triangleleft G$. Let K_i

Theorem

Let G be a supersolvable group; then the commutator subgroup G' of G is nilpotent.

Proof

Let $G = G_0 > G_1 > \ldots > G_n > G_{n+1} = 1$ be a supersolvable series. Defining $H_i := G' \cap G_i$, as we have already observed, $G' = H_0 \ge H_1 \ge \ldots \ge H_{n+1} = 1$ is a supersolvable series for G' and moreover, $H_i \triangleleft G$. Let K_i be the distinct terms of this chain, we affirm that $G' = K_0 > K_1 > \ldots > K_s = 1$ is a central series for G'. In

Theorem

Let G be a supersolvable group; then the commutator subgroup G' of G is nilpotent.

Proof

Let $G = G_0 > G_1 > \ldots > G_n > G_{n+1} = 1$ be a supersolvable series. Defining $H_i := G' \cap G_i$, as we have already observed, $G' = H_0 > H_1 > \ldots > H_{n+1} = 1$ is a supersolvable series for G' and moreover, $H_i \triangleleft G$. Let K_i be the distinct terms of this chain, we affirm that $G' = K_0 > K_1 > \ldots \geq K_s = 1$ is a central series for G'. In fact, we already checked that the K's form a normal series, now we will verify that $K_i/K_{i+1} < Z(G'/K_{i+1})$. This is equivalent to show that $[K_i, G'] < K_{i+1}$.

Proof.

Note that $g \in G$ induces an automorphism $\varphi_g \in Aut(K_i/K_{i+1})$ in the cyclic group K_i/K_{i+1} defined by $(a_iK_{i+1})\varphi_g = a_i^g K_{i+1}$. Since the group of automorphism of a cyclic group is abelian, the automorphism induced by the element [x, y] is trivial, with $x, y \in G$, then we have

$$(a_i K_{i+1})\varphi_{[x,y]} = a_i^{[x,y]} K_{i+1} = a_i K_{i+1}$$

Proof.

Note that $g \in G$ induces an automorphism $\varphi_g \in Aut(K_i/K_{i+1})$ in the cyclic group K_i/K_{i+1} defined by $(a_iK_{i+1})\varphi_g = a_i^g K_{i+1}$. Since the group of automorphism of a cyclic group is abelian, the automorphism induced by the element [x, y] is trivial, with $x, y \in G$, then we have

$$(a_i K_{i+1})\varphi_{[x,y]} = a_i^{[x,y]} K_{i+1} = a_i K_{i+1}$$

Proof.

Note that $g \in G$ induces an automorphism

 $\varphi_g \in Aut(K_i/K_{i+1})$ in the cyclic group K_i/K_{i+1} defined by $(a_iK_{i+1})\varphi_g = a_i^gK_{i+1}$. Since the group of automorphism of a cyclic group is abelian, the automorphism induced by the element [x, y] is trivial, with $x, y \in G$, then we have

$$(a_i K_{i+1})\varphi_{[x,y]} = a_i^{[x,y]} K_{i+1} = a_i K_{i+1}$$

Proof.

Note that $g \in G$ induces an automorphism

 $\varphi_g \in Aut(K_i/K_{i+1})$ in the cyclic group K_i/K_{i+1} defined by $(a_iK_{i+1})\varphi_g = a_i^gK_{i+1}$. Since the group of automorphism of a cyclic group is abelian, the automorphism induced by the element [x, y] is trivial, with $x, y \in G$, then we have

$$(a_i K_{i+1})\varphi_{[x,y]} = a_i^{[x,y]} K_{i+1} = a_i K_{i+1}$$
- We have already checked that S_3 is supersolvable but is not nilpotent, however $S'_3 = A_3$ is nilpotent.
- The converse of the last result is not true, since $A'_4 = K_4$ is nilpotent and A_4 is not supersolvable.

- We have already checked that S_3 is supersolvable but is not nilpotent, however $S'_3 = A_3$ is nilpotent.
- The converse of the last result is not true, since $A'_4 = K_4$ is nilpotent and A_4 is not supersolvable.

- Marshall Hall Jr. The Theory of Groups. 1963.
- Cleber Pereira. Propriedades de Frattini em PC-Grupos. 2014.
- C. J. E. Pinnock. Supersolubility and some Characterizations of Finite Supersoluble Groups. 1998.
- D. J. S. Robinson. A Course in the Theory of Groups. 1996.

Thank you!

Teresinha Gouvêa, Vanderlei Lopes, Wesley Quaresma Supersolvable Groups

40 / 40