M-Grupos

Teresinha Gouvêa da Silva

Dezembro/2019

1 Introdução

Definicão 1. Uma \mathbb{F} -representação ρ de um grupo é dita **monomial** se $\rho = \rho_1 \oplus \rho_2 \oplus \cdots \oplus \rho_k$ onde cada ρ_i é induzida por uma representação unidimensional de um subgrupo de G.

Definicão 2. Um grupo finito G é chamado \mathcal{M} -grupo se, sempre que \mathbb{F} é um corpo algebricamente fechado tal que $\operatorname{char}\mathbb{F}\nmid |G|$, toda \mathbb{F} -representação é monomial.

Pelo Teorema de Maschke, temos que G é um \mathcal{M} -grupo se, e somente se, todas as representações irredutíveis são monomiais.

Exemplo 1 (Grupos abelianos finitos). Uma vez que as representações irredutíveis de um grupo abeliano finito são unidimensionais.

2 M-Grupos

O nosso objetivo é conseguir critérios para encontrar exemplos de *M*-grupos.

Teorema 3. Seja G um grupo finito tal que se $U \leq V \leq G$, então ou V/U é abeliano ou possui um subgrupo abeliano normal não-central. Então G é \mathcal{M} -grupo.

Demonstração. Demonstraremos o resultado usando indução em |G|. Se G=1, então G é \mathcal{M} -grupo.

Seja G um grupo finito, tal que todos os grupos de ordem menor que satisfazem as hipóteses são \mathcal{M} -grupos, e M um $\mathbb{F}G$ -módulo simples, onde \mathbb{F} é um corpo algebricamente fechado cuja característica não divide a ordem de G. Precisamos mostrar que a representação correspondente a M é induzida por uma representação unidimensional de um subgrupo de G.

Seja ρ a representação correspondente a M e considere $K=ker\rho$. Primeiro suponha que $K\neq 1$.

 $\overline{G}=G/K$ satisfaz as hipóteses do teorema e, portanto, é um \mathcal{M} -grupo por hipótese de indução.

Desde que K age trivialmente em $M,\,M$ também é $F\overline{G}$ -módulo.

Então existe $\overline{H} \leq \overline{G}$, um $F\overline{H}$ -módulo unidimensional N e um $F\overline{G}$ -isomorfismo $\theta: M \to N^{\overline{G}}$.

Temos que $F\overline{G}$ é FG-módulo à direita (via multiplicação à direita) e isso torna $N^{\overline{G}}=N\otimes_{F\overline{H}}F\overline{G}$ um FG-módulo e verifica que θ é FG-isomorfismo.

Falta verificar que existe FG-isomorfismo entre $N^{\overline{G}}$ e $N^G = N \otimes_{FH} FG$. Escrevemos $\overline{H} = H/K$ e note que N é FH-módulo.

Então, $a \otimes Kg \mapsto a \otimes g$ é FG-isomorfismo entre $N^{\overline{G}}$ e N^G e $M \cong_{FG} N^G$. Suponha, agora, K=1, ou seja, que ρ é fiel.

Podemos supor também que G é não abeliano. Por hipótese, existe um subgrupo de G normal, abeliano e não-central (considerando V=G e U=1 na hipótese).

Usando o Teorema 8.4.7 em [1], concluímos que existe um subgrupo próprio $H \leq G$ e um FH-módulo simples L tal que $M \cong_{FG} L^G$.

H é subgrupo próprio e as hipóteses do teorema são herdadas por H, logo podemos aplicar a hipótese de indução e concluir que H é \mathcal{M} -grupo.

Portanto, existe $T \leq H$ e S um FT-módulo unidimensional tal que $L \cong_{FH} S^H$.

Então, $M \cong L^G \cong (S^H)^G \cong S^G$ (isomorfismos entre FG-módulos), desde que $(S \otimes_{FT} FH) \otimes_{FH} FG \cong S \otimes_{FT} FG$ (tal propriedade é chamada transitividade da indução).

Logo,
$$G \notin \mathcal{M}$$
-grupo.

Teorema 4 (Huppert). Seja G um grupo finito solúvel e assuma que G possua um subgrupo normal N cujos subgrupos de Sylow sejam abelianos e tal que G/N seja supersolúvel. Então G é \mathcal{M} -grupo.

Demonstração. Primeiramente, podemos assumir que G é não abeliano.

Subgrupos quocientes de G herdam essas hipóteses, então em vista do resultado anterior, é suficiente concluir que G possui um subgrupo normal abeliano não-central.

Suponha, então, que todo subgrupo abeliano normal de G está contido no centro e considere $A \leq G$ abeliano normal maximal com a propriedade A < N.

Assumindo A < N, seja B/A um subgrupo minimal normal de G/A. G é solúvel, logo B/A é abeliano elementar e B nilpotente porque $A \le Z(G)$.

Como $B \leq N$, todos os subgrupos de Sylow de B são abelianos; além disso B é nilpotente, portanto é produto de seus subgrupos de Sylow. Isso implica que B é abeliano, o que contradiz a maximalidade de A; segue que A = B = N e $N \leq Z(G)$.

G/N é supersolúvel, então existe uma série

$$N = G_0 < G_1 < \ldots < G_n = G$$

com fatores cíclicos. G é não abeliano, então existe um menor inteiro positivo tal que $G_i \not< Z(G)$. Então $G_{i-1} \le Z(G)$ e, porque G_i/G_{i+1} é cíclico, G_i é abeliano. Portanto $G_i \le Z(G)$, o que contradiz a escolha de i e obtemos que G possui um grupo abeliano normal não-central e é \mathcal{M} -grupo. \square

Exemplo 2 (Grupos supersolúveis). Um grupo G supersolúvel finito é \mathcal{M} -grupo, uma vez que consideremos N=1 no teorema anterior.

Referências

[1] D. J. S. Robinson. A Course in the Theory of Groups. 1996.