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Definition
Let G be group and p be a prime.

Op(G) =
〈
N E G |N is p-subgroup of G

〉
.

Proposition
1. Op(G) =

⋂
P ∈Sylp(G)

P ;

2. Op(G) char G;

3. Op(G) is the largest normal p-subgroup of G;
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Definition
The Fitting subgroup of a group G is defined as

F(G) = 〈N E G |N is nilpotent〉 .

I There are in the literature another definitions for the
Fitting subgroup.

I If G is nilpotent, then F(G) = G. In particular, if G is
abelian, F(G) = G.
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Proposition
Let G a group. The following statements are equivalent:

1. F(G) = 〈N E G |N is nilpotent〉;

2. F(G) =
〈
Op(G) | p is a prime

〉
;

3. F(G) =
�

p∈π(G)Op(G) (internal direct product);

4. F(G) is the largest nilpotent normal subgroup of G.
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Corollary - Fitting’s Theorem
IfH and K are nilpotent normal subgroups of a finite group G,
then also HK is a normal nilpotent subgroup of G.

Corollary
The subgroup F(G) of a group G may be described as the uni-
que maximal nilpotent normal subgroup of G.

Remark
If G is a solvable group, then its Fitting subgroup is nontrivial.
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Fitting subgroup of Sn

I For n = 2: S2 'Z2 is nilpotent. Then F(S2) = S2.

Remark: For n ≥ 3 we have Z(Sn) = 1, then Sn is non-nilpotent
and F(Sn) < Sn.

I For n = 3:
I Normal subgroups of S3: 1,A3 and S3;
I A3 'Z3 is nilpotent.

Then F(S3) = A3.
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Remark: For n ≥ 4 we have Z(An) = 1, then An is non-nilpotent
and F(An) < An.

I For n = 4:
I Normal subgroups of S4: 1,A4,X = 〈(12)(34), (13)(24)〉

and S4;
I X 'Z2 ×Z2 is nilpotent.

Then F(S4) = X.

I For n ≥ 5:
I Normal subgroups of Sn: 1,An and Sn.

Then F(Sn) = 1.



11/29

Fitting subgroup of Dn

Remark: Dn is nilpotent if and only if n = 2j for some j ≥ 0.

I F(Dn) =Dn if and only if n = 2j for some j ≥ 0.

I Suppose n = 2jm for some j ≥ 0 and m ≥ 3 odd.

Dn =
〈
a,b | an = b2 = 1 ,bab = a−1

〉
I Normal subgroups of Dn: 1,

〈
ad

〉
for some d | n. In ad-

diction, if n is even, G =
〈
a2, ab

〉
and H =

〈
a2,b

〉
are

also normal. These are all proper and normal sub-
groups of Dn.
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I 〈a〉 EDn is nilpotent, then 〈a〉 ≤ F(Dn).

I 〈a〉 ≤ F(Dn) =


1

〈a〉
G =

〈
a2, ab

〉
, neven

H =
〈
a2,b

〉
, neven

I Then F(Dn) = 〈a〉 if n is not a power of two.
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1.F(G)char G

Proof:

I Suppose α ∈ Aut(G)

I α(F(G)) =
∏
p∈π(G)α(Op(G))

I For each p ∈ π(G), Op(G)char G

I Then
∏
p∈π(G)Op(G) = F(G)

�
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2. If N E G, then N ∩F(G) = F(N )

Proof:

I F(N )char N E G, then F(N ) E G

I Note that F(N ) 6 F(G). Thus F(N ) ≤N ∩F(G)

I N ∩F(G) E G and is nilpotent, because N ∩F(G) 6 F(G).

I Thus N ∩F(G) ≤ F(N ).

I Hence N ∩F(G) = F(N )

�
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Preliminar result

Theorem
Let G be a group, Z ≤ Z(G). Then G/Z is nilpotent if, and only
if, G is nilpotent.

Corollary
Let G be a group, Z ≤ Z(G) and H ≤ G such that Z ≤H . Then
H/Z is nilpotent if, and only if, H is nilpotent.
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3. If Z ≤ Z(G), then F (G/Z) = F(G)/Z.

Proof:

I Write F(G/Z) =H/Z, where Z ≤H ≤ G.

I By the Correspondece Theorem H E G and Z 6H .

I So, by the previous Corollary, H is nilpotent.

I So H ≤ F(G) and this implies F(G/Z) =H/Z ≤ F(G)/Z

I Z ≤ F(G), by previous Corollary, F(G)/Z is nilpotent.
Note that F(G) E G.

I Hence F(G)/Z E G/Z. Thus F(G)/Z ≤ F(G/Z).
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Fitting subgroup of P SL(n,F )
Let (n, |F |) , (2,2), (2,3) and F is a finite field.

P SLn(F ) = SLn(F )/Z(SLn(F ))

I Note that SLn(F ) is perfect, so is non-nilpotent.

P SLn(F ) is simple =⇒

 F(P SLn(F )) = 1

F(P SLn(F )) = P SLn(F )

SLn(F )
Z(SLn(F ))

= P SLn(F )=F(P SLn(F )) =
F(SLn(F ))
Z(SLn(F ))

which implies SLn(F )nilpotent.
Then F(P SLn(F )) = 1 and F(SLn(F )) = Z(SLn(F )).
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Properties of Fitting subgroup

Theorem
Let G be a group and Φ(G) its Frattini subgroup. Then:

1. [F(G),F(G)] ≤ Φ(G) ≤ F(G).

2. F(G/Φ(G)) = F(G)/Φ(G).
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Definition
A Fitting series, or nilpotent series, of a group G is a normal
series

1 = G0 ≤ G1 ≤ · · · ≤ Gn−1 ≤ Gn = G

such that each factor Gi+1/Gi is nilpotent.

Upper Fitting series
For a group G, define:
I F0 = 1
I F1 = F(G)
I Fi+1 is such that Fi+1/Fi = F(G/Fi)

1 = F0 ≤ F1 ≤ · · · ≤ Fn−1 ≤ Fn = G
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Fitting Series of G = S4

I F0 = 1, F1 = F(S4) = X := 〈(12)(34), (13)(24)〉.
I F2 is such that F2/X = F(S4/X).

• Note that S4/X is non-abelian with order 6, then
S4/X ' S3.

I Then
F2/F1 = F2/X = F(S4/X) ' F(S3) = A3.

The only subgroup of S4 with order 12 is A4. Thus
F2 = A4.

I F3/F2 = F3/A4 = F(S4/A4) = S4/A4. Therefore F3 = S4.

1 < X < A4 < S4
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Fitting series of G =Dn

Dn = 〈a,b : an = b2 = 1 ,bab = a−1〉

I If n = 2j for some j ∈N, then F(Dn) =Dn.

1 < Dn

I Suppose n = 2jm for some j ∈N and m ≥ 3 odd.
F1 = F(Dn) = 〈a〉.
F2/〈a〉 = F(Dn/〈a〉) =Dn/〈a〉. Then F2 =Dn.

1 < 〈a〉 < Dn
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Fitting Length

Theorem
Suppose that

1 = G0 ≤ G1 ≤ · · · ≤ . . .Gn−1 ≤ Gn = G

is a nilpotent series, then Gi ≤ Fi ∀i.

Definition
We define the Fitting length as the smallest j for which Fj = G.
If G is trivial, G has Fitting length 0. If Fi , G for all i, G has no
Fitting length.

Theorem
A finite group G is solvable if, and only if, has Fitting length.
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Proof

Suppose G is solvable.
I Since G is finite, Fk = Fk+1 for some k.

I F(G/Fk) = Fk+1/Fk = 1

I G is solvable, then G/Fk also.

I A non-trivial solvable group has non-trivial Fitting
subgroup.

I Then G = Fk and G has Fitting length.
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Proof

Suppose that G has Fitting length j.
We claim that Fi is solvable for each i. By induction:

I i = 0, F0 = 1.

I For i = k, suppose Fk is solvable.

I Fk+1/Fk is solvable. Then Fk+1 is also. So the claim is
proved.

I There exists j such that Fj = G. Hence G is solvable.

�
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Moral

I Criterion of solubility.

I Not every solvable group is nilpotent. However, in finite
case, Fitting length intuitively measures how far such
group is to be nilpotent.

I In general, to study solvable groups by nilpotent factors
of its Fitting series.
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