Universidade Federal de Minas Gerais Instituto de Ciências Exatas Programa de Pós Graduação em Matemática

Fitting subgroup

Inácio Augusto Rabelo Pinto Júlio César Magalhães Marques
Lucas Abraão Mateus de Castro

Course: Grupos e Representações (MAT 889) Professor: Csaba Schneider

November 14, 2019

Contents

■ Introduction
■ Definition and first results

- Examples
- Properties of Fitting subgroup

■ Fitting Series

Contents

- Introduction
- Definition and first results
- Examples

■ Properties of Fitting subgroup

- Fitting Series

Contents

- Introduction

■ Definition and first results

- Examples

■ Properties of Fitting subgroup
■ Fitting Series

Definition

Let G be group and p be a prime.

$$
\left.O_{p}(G)=\langle N \unlhd G| N \text { is } p \text {-subgroup of } G\right\rangle
$$

Definition

Let G be group and p be a prime.

$$
\left.O_{p}(G)=\langle N \unlhd G| N \text { is } p \text {-subgroup of } G\right\rangle
$$

Proposition

$$
\text { 1. } O_{p}(G)=\bigcap_{P \in S y l_{p}(G)} P
$$

Definition

Let G be group and p be a prime.

$$
\left.O_{p}(G)=\langle N \unlhd G| N \text { is } p \text {-subgroup of } G\right\rangle
$$

Proposition

1. $O_{p}(G)=\bigcap_{P \in S y l_{p}(G)} P$;
2. $O_{p}(G)$ char G;

Definition

Let G be group and p be a prime.

$$
\left.O_{p}(G)=\langle N \unlhd G| N \text { is } p \text {-subgroup of } G\right\rangle
$$

Proposition

1. $O_{p}(G)=\bigcap_{P \in S y l_{p}(G)} P$;
2. $O_{p}(G)$ char G;
3. $O_{p}(G)$ is the largest normal p-subgroup of G;

Definition

The Fitting subgroup of a group G is defined as

$$
F(G)=\langle N \unlhd G| N \text { is nilpotent }\rangle .
$$

- There are in the literature another definitions for the Fitting subgroup.
- If G is nilpotent, then $F(G)=G$. In particular, if G is abelian, $F(G)=G$.

Proposition

Let G a group. The following statements are equivalent:

1. $F(G)=\langle N \unlhd G| N$ is nilpotent \rangle;

Proposition

Let G a group. The following statements are equivalent:

1. $F(G)=\langle N \unlhd G| N$ is nilpotent \rangle;
2. $F(G)=\left\langle O_{p}(G)\right| p$ is a prime \rangle;

Proposition

Let G a group. The following statements are equivalent:

1. $F(G)=\langle N \unlhd G| N$ is nilpotent \rangle;
2. $F(G)=\left\langle O_{p}(G)\right| p$ is a prime \rangle;
3. $F(G)=X_{p \in \pi(G)} O_{p}(G)$ (internal direct product);

Proposition

Let G a group. The following statements are equivalent:

1. $F(G)=\langle N \unlhd G| N$ is nilpotent \rangle;
2. $F(G)=\left\langle O_{p}(G)\right| p$ is a prime \rangle;
3. $F(G)=X_{p \in \pi(G)} O_{p}(G)$ (internal direct product);
4. $F(G)$ is the largest nilpotent normal subgroup of G.

Corollary - Fitting's Theorem

If H and K are nilpotent normal subgroups of a finite group G, then also $H K$ is a normal nilpotent subgroup of G.

Corollary - Fitting's Theorem
If H and K are nilpotent normal subgroups of a finite group G, then also $H K$ is a normal nilpotent subgroup of G.

Corollary
The subgroup $F(G)$ of a group G may be described as the unique maximal nilpotent normal subgroup of G.

Remark

 If G is a solvable group, then its Fitting subgroup is nontrivial.
Contents

■ Introduction

■ Definition and first results
■ Examples

- Properties of Fitting subgroup

■ Fitting Series

Fitting subgroup of S_{n}

- For $\boldsymbol{n}=2: S_{2} \simeq \mathbb{Z}_{2}$ is nilpotent. Then $F\left(S_{2}\right)=S_{2}$.

Remark: For $n \geq 3$ we have $Z\left(S_{n}\right)=1$, then S_{n} is non-nilpotent and $F\left(S_{n}\right)<S_{n}$.

- For $\boldsymbol{n}=3$:
- Normal subgroups of $S_{3}: 1, A_{3}$ and S_{3};
- $A_{3} \simeq \mathbb{Z}_{3}$ is nilpotent.

Then $F\left(S_{3}\right)=A_{3}$.

Remark: For $n \geq 4$ we have $Z\left(A_{n}\right)=1$, then A_{n} is non-nilpotent and $F\left(A_{n}\right)<A_{n}$.

- For $n=4$:
- Normal subgroups of $S_{4}: 1, A_{4}, X=\langle(12)(34),(13)(24)\rangle$ and S_{4};
- $X \simeq \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ is nilpotent.

Then $F\left(S_{4}\right)=X$.

- For $n \geq 5$:
- Normal subgroups of $S_{n}: 1, A_{n}$ and S_{n}.

Then $F\left(S_{n}\right)=1$.

Fitting subgroup of D_{n}

Remark: D_{n} is nilpotent if and only if $n=2^{j}$ for some $j \geq 0$.

- $F\left(D_{n}\right)=D_{n}$ if and only if $n=2^{j}$ for some $j \geq 0$.
- Suppose $n=2^{j} m$ for some $j \geq 0$ and $m \geq 3$ odd.

$$
D_{n}=\left\langle a, b \mid a^{n}=b^{2}=1, b a b=a^{-1}\right\rangle
$$

- Normal subgroups of $D_{n}: 1,\left\langle a^{d}\right\rangle$ for some $d \mid n$. In addiction, if n is even, $G=\left\langle a^{2}, a b\right\rangle$ and $H=\left\langle a^{2}, b\right\rangle$ are also normal. These are all proper and normal subgroups of D_{n}.
- $\langle a\rangle \unlhd D_{n}$ is nilpotent, then $\langle a\rangle \leq F\left(D_{n}\right)$.

$$
\langle a\rangle \leq F\left(D_{n}\right)=\left\{\begin{array}{l}
1 \\
\langle a\rangle \\
G=\left\langle a^{2}, a b\right\rangle, n \text { even } \\
H=\left\langle a^{2}, b\right\rangle, n \text { even }
\end{array}\right.
$$

- Then $F\left(D_{n}\right)=\langle a\rangle$ if n is not a power of two.

Contents

■ Properties of Fitting subgroup

- Fitting Series

1.F(G)char G

Proof:

- Suppose $\alpha \in \operatorname{Aut}(G)$
- $\alpha(F(G))=\prod_{p \in \pi(G)} \alpha\left(O_{p}(G)\right)$
- For each $p \in \pi(G), O_{p}(G)$ char G
- Then $\prod_{p \in \pi(G)} O_{p}(G)=F(G)$

2. If $N \unlhd G$, then $N \cap F(G)=F(N)$

2. If $N \unlhd G$, then $N \cap F(G)=F(N)$

Proof:

- $F(N)$ char $N \unlhd G$, then $F(N) \unlhd G$
- Note that $F(N) \leqslant F(G)$. Thus $F(N) \leq N \cap F(G)$
- $N \cap F(G) \unlhd G$ and is nilpotent, because $N \cap F(G) \leqslant F(G)$.
- Thus $N \cap F(G) \leq F(N)$.
- Hence $N \cap F(G)=F(N)$

Preliminar result

Theorem
Let G be a group, $Z \leq Z(G)$. Then G / Z is nilpotent if, and only if, G is nilpotent.

Corollary

Let G be a group, $Z \leq Z(G)$ and $H \leq G$ such that $Z \leq H$. Then H / Z is nilpotent if, and only if, H is nilpotent.

3. If $Z \leq Z(G)$, then $F(G / Z)=F(G) / Z$.

$$
\text { 3. If } Z \leq Z(G) \text {, then } F(G / Z)=F(G) / Z \text {. }
$$

Proof:

- Write $F(G / Z)=H / Z$, where $Z \leq H \leq G$.
- By the Correspondece Theorem $H \unlhd G$ and $Z \leqslant H$.
- So, by the previous Corollary, H is nilpotent.
- So $H \leq F(G)$ and this implies $F(G / Z)=H / Z \leq F(G) / Z$
- $Z \leq F(G)$, by previous Corollary, $F(G) / Z$ is nilpotent. Note that $F(G) \unlhd G$.
- Hence $F(G) / Z \unlhd G / Z$. Thus $F(G) / Z \leq F(G / Z)$.

Fitting subgroup of $P S L(n, \mathbb{F})$

Let $(n,|\mathbb{F}|) \neq(2,2),(2,3)$ and \mathbb{F} is a finite field.

$$
P S L_{n}(\mathbb{F})=S L_{n}(\mathbb{F}) / Z\left(S L_{n}(\mathbb{F})\right)
$$

- Note that $S L_{n}(\mathbb{F})$ is perfect, so is non-nilpotent.

Fitting subgroup of $P S L(n, \mathbb{F})$

Let $(n,|\mathbb{F}|) \neq(2,2),(2,3)$ and \mathbb{F} is a finite field.

$$
P S L_{n}(\mathbb{F})=S L_{n}(\mathbb{F}) / Z\left(S L_{n}(\mathbb{F})\right)
$$

- Note that $S L_{n}(\mathbb{F})$ is perfect, so is non-nilpotent.
$P S L_{n}(\mathbb{F})$ is simple $\Longrightarrow\left\{\begin{array}{l}F\left(P S L_{n}(\mathbb{F})\right)=1 \\ F\left(P S L_{n}(\mathbb{F})\right)=P S L_{n}(\mathbb{F})\end{array}\right.$

$$
\frac{S L_{n}(\mathbb{F})}{Z\left(S L_{n}(\mathbb{F})\right)}=P S L_{n}(\mathbb{F})=F\left(P S L_{n}(\mathbb{F})\right)
$$

Fitting subgroup of $P S L(n, \mathbb{F})$

Let $(n,|\mathbb{F}|) \neq(2,2),(2,3)$ and \mathbb{F} is a finite field.

$$
P S L_{n}(\mathbb{F})=S L_{n}(\mathbb{F}) / Z\left(S L_{n}(\mathbb{F})\right)
$$

- Note that $S L_{n}(\mathbb{F})$ is perfect, so is non-nilpotent.
$P S L_{n}(\mathbb{F})$ is simple $\Longrightarrow\left\{\begin{array}{l}F\left(P S L_{n}(\mathbb{F})\right)=1 \\ F\left(P S L_{n}(\mathbb{F})\right)=P S L_{n}(\mathbb{F})\end{array}\right.$

$$
\frac{S L_{n}(\mathbb{F})}{Z\left(S L_{n}(\mathbb{F})\right)}=P S L_{n}(\mathbb{F})=F\left(P S L_{n}(\mathbb{F})\right)=\frac{F\left(S L_{n}(\mathbb{F})\right)}{Z\left(S L_{n}(\mathbb{F})\right)}
$$

Fitting subgroup of $P S L(n, \mathbb{F})$

Let $(n,|\mathbb{F}|) \neq(2,2),(2,3)$ and \mathbb{F} is a finite field.

$$
P S L_{n}(\mathbb{F})=S L_{n}(\mathbb{F}) / Z\left(S L_{n}(\mathbb{F})\right)
$$

- Note that $S L_{n}(\mathbb{F})$ is perfect, so is non-nilpotent.
$P S L_{n}(\mathbb{F})$ is simple $\Longrightarrow\left\{\begin{array}{l}F\left(P S L_{n}(\mathbb{F})\right)=1 \\ F\left(P S L_{n}(\mathbb{F})\right)=P S L_{n}(\mathbb{F})\end{array}\right.$

$$
\frac{S L_{n}(\mathbb{F})}{Z\left(S L_{n}(\mathbb{F})\right)}=P S L_{n}(\mathbb{F})=F\left(P S L_{n}(\mathbb{F})\right)=\frac{F\left(S L_{n}(\mathbb{F})\right)}{Z\left(S L_{n}(\mathbb{F})\right)}
$$

which implies $S L_{n}(\mathbb{F})$ nilpotent.

Fitting subgroup of $P S L(n, \mathbb{F})$

Let $(n,|\mathbb{F}|) \neq(2,2),(2,3)$ and \mathbb{F} is a finite field.

$$
P S L_{n}(\mathbb{F})=S L_{n}(\mathbb{F}) / Z\left(S L_{n}(\mathbb{F})\right)
$$

- Note that $S L_{n}(\mathbb{F})$ is perfect, so is non-nilpotent.
$P S L_{n}(\mathbb{F})$ is simple $\Longrightarrow\left\{\begin{array}{l}F\left(P S L_{n}(\mathbb{F})\right)=1 \\ F\left(P S L_{n}(\mathbb{F})\right)=P S L_{n}(\mathbb{F})\end{array}\right.$

$$
\frac{S L_{n}(\mathbb{F})}{Z\left(S L_{n}(\mathbb{F})\right)}=P S L_{n}(\mathbb{F})=F\left(P S L_{n}(\mathbb{F})\right)=\frac{F\left(S L_{n}(\mathbb{F})\right)}{Z\left(S L_{n}(\mathbb{F})\right)}
$$

which implies $S L_{n}(\mathbb{F})$ nilpotent.
Then $F\left(P S L_{n}(\mathbb{F})\right)=1$ and $F\left(S L_{n}(\mathbb{F})\right)=Z\left(S L_{n}(\mathbb{F})\right)$.

Properties of Fitting subgroup

Theorem
Let G be a group and $\Phi(G)$ its Frattini subgroup. Then:

1. $[F(G), F(G)] \leq \Phi(G) \leq F(G)$.
2. $F(G / \Phi(G))=F(G) / \Phi(G)$.

Contents

■ Introduction

■ Definition and first results

- Examples
- Properties of Fitting subgroup

■ Fitting Series

Definition

A Fitting series, or nilpotent series, of a group G is a normal series

$$
1=G_{0} \leq G_{1} \leq \cdots \leq G_{n-1} \leq G_{n}=G
$$

such that each factor G_{i+1} / G_{i} is nilpotent.

Definition

A Fitting series, or nilpotent series, of a group G is a normal series

$$
1=G_{0} \leq G_{1} \leq \cdots \leq G_{n-1} \leq G_{n}=G
$$

such that each factor G_{i+1} / G_{i} is nilpotent.
Upper Fitting series
For a group G, define:

- $F_{0}=1$
- $F_{1}=F(G)$
- F_{i+1} is such that $F_{i+1} / F_{i}=F\left(G / F_{i}\right)$

$$
1=F_{0} \leq F_{1} \leq \cdots \leq F_{n-1} \leq F_{n}=G
$$

Fitting Series of $G=S_{4}$

- $F_{0}=1, F_{1}=F\left(S_{4}\right)=X:=\langle(12)(34),(13)(24)\rangle$.
- F_{2} is such that $F_{2} / X=F\left(S_{4} / X\right)$.
- Note that S_{4} / X is non-abelian with order 6 , then $S_{4} / X \simeq S_{3}$.
- Then

$$
F_{2} / F_{1}=F_{2} / X=F\left(S_{4} / X\right) \simeq F\left(S_{3}\right)=A_{3} .
$$

The only subgroup of S_{4} with order 12 is A_{4}. Thus $F_{2}=A_{4}$.

- $F_{3} / F_{2}=F_{3} / A_{4}=F\left(S_{4} / A_{4}\right)=S_{4} / A_{4}$. Therefore $F_{3}=S_{4}$.

$$
1<X<A_{4}<S_{4}
$$

Fitting series of $G=D_{n}$

$$
D_{n}=\left\langle a, b: a^{n}=b^{2}=1, b a b=a^{-1}\right\rangle
$$

- If $n=2^{j}$ for some $j \in \mathbb{N}$, then $F\left(D_{n}\right)=D_{n}$.

$$
1<D_{n}
$$

- Suppose $n=2^{j} m$ for some $j \in \mathbb{N}$ and $m \geq 3$ odd.

$$
F_{1}=F\left(D_{n}\right)=\langle a\rangle .
$$

$$
F_{2} /\langle a\rangle=F\left(D_{n} /\langle a\rangle\right)=D_{n} /\langle a\rangle \text {. Then } F_{2}=D_{n} .
$$

$$
1<\langle a\rangle<D_{n}
$$

Fitting Length

Theorem
Suppose that

$$
1=G_{0} \leq G_{1} \leq \cdots \leq \ldots G_{n-1} \leq G_{n}=G
$$

is a nilpotent series, then $G_{i} \leq F_{i} \forall i$.

Fitting Length

Theorem

Suppose that

$$
1=G_{0} \leq G_{1} \leq \cdots \leq \ldots G_{n-1} \leq G_{n}=G
$$

is a nilpotent series, then $G_{i} \leq F_{i} \forall i$.

Definition

We define the Fitting length as the smallest j for which $F_{j}=G$. If G is trivial, G has Fitting length 0 . If $F_{i} \neq G$ for all i, G has no Fitting length.

Fitting Length

Theorem

Suppose that

$$
1=G_{0} \leq G_{1} \leq \cdots \leq \ldots G_{n-1} \leq G_{n}=G
$$

is a nilpotent series, then $G_{i} \leq F_{i} \forall i$.

Definition

We define the Fitting length as the smallest j for which $F_{j}=G$. If G is trivial, G has Fitting length 0 . If $F_{i} \neq G$ for all i, G has no Fitting length.

Theorem
A finite group G is solvable if, and only if, has Fitting length.

Proof

Suppose G is solvable.

- Since G is finite, $F_{k}=F_{k+1}$ for some k.

Proof

Suppose G is solvable.

- Since G is finite, $F_{k}=F_{k+1}$ for some k.
- $F\left(G / F_{k}\right)=F_{k+1} / F_{k}=1$

Proof

Suppose G is solvable.

- Since G is finite, $F_{k}=F_{k+1}$ for some k.
- $F\left(G / F_{k}\right)=F_{k+1} / F_{k}=1$
- G is solvable, then G / F_{k} also.

Proof

Suppose G is solvable.

- Since G is finite, $F_{k}=F_{k+1}$ for some k.
- $F\left(G / F_{k}\right)=F_{k+1} / F_{k}=1$
- G is solvable, then G / F_{k} also.
- A non-trivial solvable group has non-trivial Fitting subgroup.

Proof

Suppose G is solvable.

- Since G is finite, $F_{k}=F_{k+1}$ for some k.
- $F\left(G / F_{k}\right)=F_{k+1} / F_{k}=1$
- G is solvable, then G / F_{k} also.
- A non-trivial solvable group has non-trivial Fitting subgroup.
- Then $G=F_{k}$ and G has Fitting length.

Proof

Suppose that G has Fitting length j.
We claim that F_{i} is solvable for each i. By induction:

Proof

Suppose that G has Fitting length j.
We claim that F_{i} is solvable for each i. By induction:

- $i=0, F_{0}=1$.

Proof

Suppose that G has Fitting length j.
We claim that F_{i} is solvable for each i. By induction:

- $i=0, F_{0}=1$.
- For $i=k$, suppose F_{k} is solvable.

Proof

Suppose that G has Fitting length j.
We claim that F_{i} is solvable for each i. By induction:

- $i=0, F_{0}=1$.
- For $i=k$, suppose F_{k} is solvable.
- F_{k+1} / F_{k} is solvable. Then F_{k+1} is also. So the claim is proved.

Proof

Suppose that G has Fitting length j.
We claim that F_{i} is solvable for each i. By induction:

- $i=0, F_{0}=1$.
- For $i=k$, suppose F_{k} is solvable.
- F_{k+1} / F_{k} is solvable. Then F_{k+1} is also. So the claim is proved.
- There exists j such that $F_{j}=G$. Hence G is solvable.

Moral

- Criterion of solubility.
- Not every solvable group is nilpotent. However, in finite case, Fitting length intuitively measures how far such group is to be nilpotent.
- In general, to study solvable groups by nilpotent factors of its Fitting series.

Referências I

[1] J. L. Alperin, R. B. Bell, Groups and representations. Graduate Texts in Mathematics, 162, Springer, 1995.
[2] N. Boston, The Fitting and Frattini subgroups. Lecture Notes, available from: https://www.math.wisc.edu/~boston/notes3.pdf. [Accessed 28/10/2019]
[3] K. Conrad, Dihedral Subgroups. Expository papers, available from: https://kconrad.math.uconn.edu/blurbs/grouptheory/dihedral2.pdf. [Accessed 28/10/2019]
[4] K. Conrad, Simplicity of $P S L_{n}(\mathbb{F})$. Expository papers, available from: https://kconrad.math.uconn.edu/blurbs/grouptheory/PSLnsimple.pdf. [Accessed 29/10/2019]
[5] K. Conrad, Subgroups Series II. Expository papers, available from: https://kconrad.math.uconn.edu/blurbs/grouptheory/subgpseries2.pdf. [Accessed 28/10/2019]
[6] K. Doerk, T. Hawkes, inite soluble groups. Walter de Gruyter, 1992.
[7] D. Gorenstein, Finite Groups. 2nd ed. Chelsea Publishing Company, 1980.

Referências II

[8] I. M. Isaacs, The Fitting and Frattini subgroups. Notes 3, 2002. https://www.math.wisc.edu/~boston/notes3.pdf [Accessed 03/11/2019]
[9] H. Kurzweil and B. Stellmacher, The theory of finite groups - An introduction. 1st ed. Universitex - Springer, 2003.
[10] J. B. Olsson, Group theory. version 2007, lecture notes. http://web.math.ku.dk/~olsson/manus/Gruppe-2009/gruppe2007en_all.pdf [Accessed 03/11/2019]
[11] D. J. S. Robinson, A course in the theory of groups. 2nd ed. Springer, 1996.
[12] H. E. Rose, A course on finite groups. Springer, 2009.
[13] J. J. Rotman, An Introduction to the Theory of Groups. 4nd ed. Springer, 1995.
[14] R. Schoof, The symmetric groups S_{n}. Lecture notes - Algebra II, available from: https://www.mat.uniroma2.it/ eal/S6.pdf. [Accessed 29/10/2019]
[15] B. A. F. Wehrfritz, Finite groups: a second course on group theory. World Scientific Publishing Company, 1999.

