Universidade Federal de Minas Gerais Instituto de Ciências Exatas Programa de Pós Graduação em Matemática

Fitting subgroup

Inácio Augusto Rabelo Pinto Júlio César Magalhães Marques Lucas Abraão Mateus de Castro

Course: Grupos e Representações (MAT 889) Professor: Csaba Schneider

November 14, 2019

- Introduction
- Definition and first results
- Examples
- Properties of Fitting subgroup
- Fitting Series

Introduction

- Definition and first results
- Examples
- Properties of Fitting subgroup
- Fitting Series

Introduction

Definition and first results

- Examples
- Properties of Fitting subgroup
- Fitting Series

$$O_p(G) = \langle N \trianglelefteq G \mid N \text{ is } p\text{-subgroup of } G \rangle.$$

$$O_p(G) = \langle N \trianglelefteq G \mid N \text{ is } p \text{-subgroup of } G \rangle.$$

Proposition

1.
$$O_p(G) = \bigcap_{P \in Syl_p(G)} P;$$

$$O_p(G) = \langle N \trianglelefteq G \mid N \text{ is } p \text{-subgroup of } G \rangle.$$

Proposition

1.
$$O_p(G) = \bigcap_{P \in Syl_p(G)} P;$$

2. $O_p(G)$ char G;

$$O_p(G) = \langle N \trianglelefteq G \mid N \text{ is } p \text{-subgroup of } G \rangle.$$

Proposition

1.
$$O_p(G) = \bigcap_{P \in Syl_p(G)} P;$$

- 2. $O_p(G)$ char G;
- 3. $O_p(G)$ is the largest normal *p*-subgroup of *G*;

Definition

The Fitting subgroup of a group G is defined as

 $F(G) = \langle N \trianglelefteq G | N \text{ is nilpotent} \rangle.$

- There are in the literature another definitions for the Fitting subgroup.
- ▶ If *G* is nilpotent, then F(G) = G. In particular, if *G* is abelian, F(G) = G.

Let *G* a group. The following statements are equivalent: 1. $F(G) = \langle N \leq G | N \text{ is nilpotent} \rangle;$

Let *G* a group. The following statements are equivalent:

1.
$$F(G) = \langle N \leq G | N \text{ is nilpotent} \rangle$$
;

2.
$$F(G) = \langle O_p(G) | p \text{ is a prime} \rangle;$$

Let G a group. The following statements are equivalent:

1.
$$F(G) = \langle N \leq G | N \text{ is nilpotent} \rangle$$
;

2.
$$F(G) = \langle O_p(G) | p \text{ is a prime} \rangle;$$

3. $F(G) = \bigotimes_{p \in \pi(G)} O_p(G)$ (internal direct product);

Let G a group. The following statements are equivalent:

1. $F(G) = \langle N \leq G | N \text{ is nilpotent} \rangle$;

2.
$$F(G) = \langle O_p(G) | p \text{ is a prime} \rangle;$$

3. $F(G) = \bigotimes_{p \in \pi(G)} O_p(G)$ (internal direct product);

4. F(G) is the largest nilpotent normal subgroup of G.

Corollary - Fitting's Theorem

If H and K are nilpotent normal subgroups of a finite group G, then also HK is a normal nilpotent subgroup of G.

Corollary - Fitting's Theorem

If H and K are nilpotent normal subgroups of a finite group G, then also HK is a normal nilpotent subgroup of G.

Corollary

The subgroup F(G) of a group G may be described as the unique maximal nilpotent normal subgroup of G.

Remark

If G is a solvable group, then its Fitting subgroup is nontrivial.

- Introduction
- Definition and first results
- Examples
- Properties of Fitting subgroup
- Fitting Series

Fitting subgroup of S_n

For n = 2: $S_2 \simeq \mathbb{Z}_2$ is nilpotent. Then $F(S_2) = S_2$.

Remark: For $n \ge 3$ we have $Z(S_n) = 1$, then S_n is non-nilpotent and $F(S_n) < S_n$.

- ▶ For *n* = 3:
 - ▶ Normal subgroups of *S*₃: 1, *A*₃ and *S*₃;
 - $A_3 \simeq \mathbb{Z}_3$ is nilpotent.

Then $F(S_3) = A_3$.

Remark: For $n \ge 4$ we have $Z(A_n) = 1$, then A_n is non-nilpotent and $F(A_n) < A_n$.

► For *n* = 4:

Normal subgroups of S_4 : 1, A_4 , $X = \langle (12)(34), (13)(24) \rangle$ and S_4 ;

•
$$X \simeq \mathbb{Z}_2 \times \mathbb{Z}_2$$
 is nilpotent.

Then $F(S_4) = X$.

For $n \ge 5$:

• Normal subgroups of S_n : 1, A_n and S_n .

Then $F(S_n) = 1$.

Fitting subgroup of D_n

Remark: D_n is nilpotent if and only if $n = 2^j$ for some $j \ge 0$.

- $F(D_n) = D_n$ if and only if $n = 2^j$ for some $j \ge 0$.
- Suppose $n = 2^j m$ for some $j \ge 0$ and $m \ge 3$ odd.

$$D_n = \left\langle a, b \mid a^n = b^2 = 1, bab = a^{-1} \right\rangle$$

Normal subgroups of D_n : $1, \langle a^d \rangle$ for some $d \mid n$. In addiction, if n is even, $G = \langle a^2, ab \rangle$ and $H = \langle a^2, b \rangle$ are also normal. These are all proper and normal subgroups of D_n .

• $\langle a \rangle \trianglelefteq D_n$ is nilpotent, then $\langle a \rangle \le F(D_n)$.

$$\langle a \rangle \leq F(D_n) = \begin{cases} 1 \\ \langle a \rangle \\ G = \langle a^2, ab \rangle, n \text{ even} \\ H = \langle a^2, b \rangle, n \text{ even} \end{cases}$$

• Then $F(D_n) = \langle a \rangle$ if *n* is not a power of two.

- Introduction
- Definition and first results
- Examples
- Properties of Fitting subgroup
- Fitting Series

1.F(G) char G

Proof:

Suppose $\alpha \in Aut(G)$

•
$$\alpha(F(G)) = \prod_{p \in \pi(G)} \alpha(O_p(G))$$

► For each $p \in \pi(G)$, $O_p(G)$ char G

• Then
$$\prod_{p \in \pi(G)} O_p(G) = F(G)$$

2. If $N \trianglelefteq G$, then $N \cap F(G) = F(N)$

2. If
$$N \trianglelefteq G$$
, then $N \cap F(G) = F(N)$

Proof:

- ► F(N) char $N \trianglelefteq G$, then $F(N) \trianglelefteq G$
- ▶ Note that $F(N) \leq F(G)$. Thus $F(N) \leq N \cap F(G)$
- ▶ $N \cap F(G) \leq G$ and is nilpotent, because $N \cap F(G) \leq F(G)$.
- Thus $N \cap F(G) \leq F(N)$.
- Hence $N \cap F(G) = F(N)$

Preliminar result

Theorem

Let *G* be a group, $Z \leq Z(G)$. Then G/Z is nilpotent if, and only if, *G* is nilpotent.

Corollary

Let *G* be a group, $Z \le Z(G)$ and $H \le G$ such that $Z \le H$. Then H/Z is nilpotent if, and only if, *H* is nilpotent.

3. If $Z \leq Z(G)$, then F(G/Z) = F(G)/Z.

3. If $Z \leq Z(G)$, then F(G/Z) = F(G)/Z.

Proof:

- Write F(G/Z) = H/Z, where $Z \le H \le G$.
- ▶ By the Correspondece Theorem $H \trianglelefteq G$ and $Z \le H$.
- So, by the previous Corollary, *H* is nilpotent.
- So $H \le F(G)$ and this implies $F(G/Z) = H/Z \le F(G)/Z$
- ► $Z \leq F(G)$, by previous Corollary, F(G)/Z is nilpotent. Note that $F(G) \leq G$.
- ► Hence $F(G)/Z \leq G/Z$. Thus $F(G)/Z \leq F(G/Z)$.

Let $(n, |\mathbb{F}|) \neq (2, 2), (2, 3)$ and \mathbb{F} is a finite field.

 $PSL_n(\mathbb{F}) = SL_n(\mathbb{F})/Z(SL_n(\mathbb{F}))$

Note that $SL_n(\mathbb{F})$ is perfect, so is non-nilpotent.

Let $(n, |\mathbb{F}|) \neq (2, 2), (2, 3)$ and \mathbb{F} is a finite field.

$$PSL_n(\mathbb{F}) = SL_n(\mathbb{F})/Z(SL_n(\mathbb{F}))$$

Note that $SL_n(\mathbb{F})$ is perfect, so is non-nilpotent.

$$PSL_n(\mathbb{F}) \text{ is simple } \Longrightarrow \begin{cases} F(PSL_n(\mathbb{F})) = 1\\ F(PSL_n(\mathbb{F})) = PSL_n(\mathbb{F}) \end{cases}$$

$$\frac{SL_n(\mathbb{F})}{Z(SL_n(\mathbb{F}))} = PSL_n(\mathbb{F}) = F(PSL_n(\mathbb{F}))$$

Let $(n, |\mathbb{F}|) \neq (2, 2), (2, 3)$ and \mathbb{F} is a finite field.

$$PSL_n(\mathbb{F}) = SL_n(\mathbb{F})/Z(SL_n(\mathbb{F}))$$

Note that $SL_n(\mathbb{F})$ is perfect, so is non-nilpotent.

$$PSL_n(\mathbb{F}) \text{ is simple } \Longrightarrow \begin{cases} F(PSL_n(\mathbb{F})) = 1\\ F(PSL_n(\mathbb{F})) = PSL_n(\mathbb{F}) \end{cases}$$

$$\frac{SL_n(\mathbb{F})}{Z(SL_n(\mathbb{F}))} = PSL_n(\mathbb{F}) = F(PSL_n(\mathbb{F})) = \frac{F(SL_n(\mathbb{F}))}{Z(SL_n(\mathbb{F}))}$$

Let $(n, |\mathbb{F}|) \neq (2, 2), (2, 3)$ and \mathbb{F} is a finite field.

$$PSL_n(\mathbb{F}) = SL_n(\mathbb{F})/Z(SL_n(\mathbb{F}))$$

Note that $SL_n(\mathbb{F})$ is perfect, so is non-nilpotent.

$$PSL_n(\mathbb{F}) \text{ is simple } \Longrightarrow \begin{cases} F(PSL_n(\mathbb{F})) = 1\\ F(PSL_n(\mathbb{F})) = PSL_n(\mathbb{F}) \end{cases}$$

$$\frac{SL_n(\mathbb{F})}{Z(SL_n(\mathbb{F}))} = PSL_n(\mathbb{F}) = F(PSL_n(\mathbb{F})) = \frac{F(SL_n(\mathbb{F}))}{Z(SL_n(\mathbb{F}))}$$

which implies $SL_n(\mathbb{F})$ nilpotent.

Let $(n, |\mathbb{F}|) \neq (2, 2), (2, 3)$ and \mathbb{F} is a finite field.

$$PSL_n(\mathbb{F}) = SL_n(\mathbb{F})/Z(SL_n(\mathbb{F}))$$

Note that $SL_n(\mathbb{F})$ is perfect, so is non-nilpotent.

$$PSL_n(\mathbb{F}) \text{ is simple } \Longrightarrow \begin{cases} F(PSL_n(\mathbb{F})) = 1\\ F(PSL_n(\mathbb{F})) = PSL_n(\mathbb{F}) \end{cases}$$

$$\frac{SL_n(\mathbb{F})}{Z(SL_n(\mathbb{F}))} = PSL_n(\mathbb{F}) = F(PSL_n(\mathbb{F})) = \frac{F(SL_n(\mathbb{F}))}{Z(SL_n(\mathbb{F}))}$$

which implies $SL_n(\mathbb{F})$ nilpotent. Then $F(PSL_n(\mathbb{F})) = 1$ and $F(SL_n(\mathbb{F})) = Z(SL_n(\mathbb{F}))$.

Properties of Fitting subgroup

Theorem

Let G be a group and $\Phi(G)$ its Frattini subgroup. Then:

- 1. $[F(G), F(G)] \le \Phi(G) \le F(G)$.
- 2. $F(G/\Phi(G)) = F(G)/\Phi(G)$.

- Introduction
- Definition and first results
- Examples
- Properties of Fitting subgroup
- Fitting Series

Definition

A **Fitting series**, or nilpotent series, of a group G is a normal series

$$1 = G_0 \le G_1 \le \dots \le G_{n-1} \le G_n = G$$

such that each factor G_{i+1}/G_i is nilpotent.

Definition

A **Fitting series**, or nilpotent series, of a group G is a normal series

$$1 = G_0 \le G_1 \le \dots \le G_{n-1} \le G_n = G$$

such that each factor G_{i+1}/G_i is nilpotent.

Upper Fitting series

For a group *G*, define:

►
$$F_0 = 1$$

$$\blacktriangleright F_1 = F(G)$$

•
$$F_{i+1}$$
 is such that $F_{i+1}/F_i = F(G/F_i)$

$$1 = F_0 \le F_1 \le \dots \le F_{n-1} \le F_n = G$$

Fitting Series of $G = S_4$

- $F_0 = 1, F_1 = F(S_4) = X := \langle (12)(34), (13)(24) \rangle.$
- F_2 is such that $F_2/X = F(S_4/X)$.

• Note that S_4/X is non-abelian with order 6, then $S_4/X \simeq S_3$.

Then

$$F_2/F_1 = F_2/X = F(S_4/X) \simeq F(S_3) = A_3.$$

The only subgroup of S_4 with order 12 is A_4 . Thus $F_2 = A_4$. $F_3/F_2 = F_3/A_4 = F(S_4/A_4) = S_4/A_4$. Therefore $F_3 = S_4$. $1 < X < A_4 < S_4$ Fitting series of $G = D_n$

$$D_n = \langle a, b : a^n = b^2 = 1, bab = a^{-1} \rangle$$

• If
$$n = 2^j$$
 for some $j \in \mathbb{N}$, then $F(D_n) = D_n$.

 $1 < D_n$

Suppose $n = 2^{j}m$ for some $j \in \mathbb{N}$ and $m \ge 3$ odd. $F_1 = F(D_n) = \langle a \rangle$. $F_2/\langle a \rangle = F(D_n/\langle a \rangle) = D_n/\langle a \rangle$. Then $F_2 = D_n$. $1 < \langle a \rangle < D_n$

23/29

Fitting Length

Theorem Suppose that

$$1 = G_0 \le G_1 \le \cdots \le \dots G_{n-1} \le G_n = G$$

is a nilpotent series, then $G_i \leq F_i \ \forall i$.

Fitting Length

Theorem Suppose that

$$1 = G_0 \le G_1 \le \dots \le G_{n-1} \le G_n = G$$

is a nilpotent series, then $G_i \leq F_i \ \forall i$.

Definition

We define the **Fitting length** as the smallest *j* for which $F_j = G$. If *G* is trivial, *G* has Fitting length 0. If $F_i \neq G$ for all *i*, *G* has no Fitting length.

Fitting Length

Theorem Suppose that

$$1 = G_0 \le G_1 \le \dots \le G_{n-1} \le G_n = G$$

is a nilpotent series, then $G_i \leq F_i \ \forall i$.

Definition

We define the **Fitting length** as the smallest *j* for which $F_j = G$. If *G* is trivial, *G* has Fitting length 0. If $F_i \neq G$ for all *i*, *G* has no Fitting length.

Theorem

A finite group *G* is solvable if, and only if, has Fitting length.

Suppose G is solvable.

Suppose *G* is solvable.

•
$$F(G/F_k) = F_{k+1}/F_k = 1$$

Suppose G is solvable.

•
$$F(G/F_k) = F_{k+1}/F_k = 1$$

• *G* is solvable, then
$$G/F_k$$
 also.

Suppose G is solvable.

•
$$F(G/F_k) = F_{k+1}/F_k = 1$$

- *G* is solvable, then G/F_k also.
- A non-trivial solvable group has non-trivial Fitting subgroup.

Suppose G is solvable.

•
$$F(G/F_k) = F_{k+1}/F_k = 1$$

- *G* is solvable, then G/F_k also.
- A non-trivial solvable group has non-trivial Fitting subgroup.
- Then $G = F_k$ and G has Fitting length.

Suppose that G has Fitting length j. We claim that F_i is solvable for each i. By induction:

Suppose that G has Fitting length j. We claim that F_i is solvable for each i. By induction:

▶ $i = 0, F_0 = 1.$

Suppose that G has Fitting length j. We claim that F_i is solvable for each i. By induction:

▶
$$i = 0, F_0 = 1.$$

For
$$i = k$$
, suppose F_k is solvable.

Suppose that G has Fitting length j. We claim that F_i is solvable for each i. By induction:

▶
$$i = 0, F_0 = 1.$$

- For i = k, suppose F_k is solvable.
- F_{k+1}/F_k is solvable. Then F_{k+1} is also. So the claim is proved.

Suppose that G has Fitting length j. We claim that F_i is solvable for each i. By induction:

▶ $i = 0, F_0 = 1.$

- For i = k, suppose F_k is solvable.
- F_{k+1}/F_k is solvable. Then F_{k+1} is also. So the claim is proved.
- There exists j such that $F_j = G$. Hence G is solvable.

Moral

- Criterion of solubility.
- Not every solvable group is nilpotent. However, in finite case, Fitting length intuitively measures how far such group is to be nilpotent.
- In general, to study solvable groups by nilpotent factors of its Fitting series.

Referências l

- [1] J. L. Alperin, R. B. Bell, *Groups and representations*. Graduate Texts in Mathematics, 162, Springer, 1995.
- [2] N. Boston, The Fitting and Frattini subgroups. Lecture Notes, available from: https://www.math.wisc.edu/~boston/notes3.pdf. [Accessed 28/10/2019]
- K. Conrad, Dihedral Subgroups. Expository papers, available from: https://kconrad.math.uconn.edu/blurbs/grouptheory/dihedral2.pdf. [Accessed 28/10/2019]
- [4] K. Conrad, Simplicity of $PSL_n(\mathbb{F})$. Expository papers, available from: https://kconrad.math.uconn.edu/blurbs/grouptheory/PSLnsimple.pdf. [Accessed 29/10/2019]
- K. Conrad, Subgroups Series II. Expository papers, available from: https://kconrad.math.uconn.edu/blurbs/grouptheory/subgpseries2.pdf.
 [Accessed 28/10/2019]
- [6] K. Doerk, T. Hawkes, *inite soluble groups*. Walter de Gruyter, 1992.
- [7] D. Gorenstein, *Finite Groups*. 2nd ed. Chelsea Publishing Company, 1980.

Referências II

- [8] I. M. Isaacs, The Fitting and Frattini subgroups. Notes 3, 2002. https://www.math.wisc.edu/~boston/notes3.pdf [Accessed 03/11/2019]
- [9] H. Kurzweil and B. Stellmacher, The theory of finite groups An introduction. 1st ed. Universitex - Springer, 2003.
- J. B. Olsson, Group theory. version 2007, lecture notes. http://web.math.ku.dk/~olsson/manus/Gruppe-2009/gruppe2007en_all.pdf
 [Accessed 03/11/2019]
- [11] D. J. S. Robinson, A course in the theory of groups. 2nd ed. Springer, 1996.
- [12] H. E. Rose, A course on finite groups. Springer, 2009.
- [13] J. J. Rotman, An Introduction to the Theory of Groups. 4nd ed. Springer, 1995.
- [14] R. Schoof, The symmetric groups S_n. Lecture notes Algebra II, available from: https://www.mat.uniroma2.it/ eal/S6.pdf. [Accessed 29/10/2019]
- [15] B. A. F. Wehrfritz, *Finite groups: a second course on group theory*. World Scientific Publishing Company, 1999.