{"id":294,"date":"2019-08-12T13:11:37","date_gmt":"2019-08-12T13:11:37","guid":{"rendered":"http:\/\/localhost\/?page_id=294"},"modified":"2022-06-23T21:39:54","modified_gmt":"2022-06-24T00:39:54","slug":"grupos-e-representacoes","status":"publish","type":"page","link":"http:\/\/localhost\/index.php\/ensino\/grupos-e-representacoes\/","title":{"rendered":"Grupos e Representa\u00e7\u00f5es"},"content":{"rendered":"
Disciplina de p\u00f3s-gradua\u00e7\u00e3o – semestre II de 2019.<\/p>\n
Hor\u00e1rio:\u00a0<\/strong>9:30-11 nas ter\u00e7as e quintas Bibliografia:<\/strong> Notas, apostilas e exerc\u00edcios<\/strong><\/p>\n Disciplina de p\u00f3s-gradua\u00e7\u00e3o – semestre II de 2019. Hor\u00e1rio:\u00a09:30-11 nas ter\u00e7as e quintas Professor:\u00a0Csaba Schneider Ementa:\u00a0Grupos nilpotentes, caracteriza\u00e7\u00f5es e s\u00e9ries centrais (descendentes e ascendentes). $p$-grupos, s\u00e9ries centrais em $p$-grupos. Grupos sol\u00faveis. O subgrupo de Frattini e as suas caracteriza\u00e7\u00f5es. Grupos de permuta\u00e7\u00f5es, grupos de matrizes, exemplos de grupos simples. Representa\u00e7\u00f5es complexas de grupos finitos; caracteres; … Continue reading Grupos e Representa\u00e7\u00f5es<\/span><\/a><\/p>\n","protected":false},"author":1,"featured_media":0,"parent":64,"menu_order":0,"comment_status":"closed","ping_status":"closed","template":"","meta":[],"_links":{"self":[{"href":"http:\/\/localhost\/index.php\/wp-json\/wp\/v2\/pages\/294"}],"collection":[{"href":"http:\/\/localhost\/index.php\/wp-json\/wp\/v2\/pages"}],"about":[{"href":"http:\/\/localhost\/index.php\/wp-json\/wp\/v2\/types\/page"}],"author":[{"embeddable":true,"href":"http:\/\/localhost\/index.php\/wp-json\/wp\/v2\/users\/1"}],"replies":[{"embeddable":true,"href":"http:\/\/localhost\/index.php\/wp-json\/wp\/v2\/comments?post=294"}],"version-history":[{"count":40,"href":"http:\/\/localhost\/index.php\/wp-json\/wp\/v2\/pages\/294\/revisions"}],"predecessor-version":[{"id":670,"href":"http:\/\/localhost\/index.php\/wp-json\/wp\/v2\/pages\/294\/revisions\/670"}],"up":[{"embeddable":true,"href":"http:\/\/localhost\/index.php\/wp-json\/wp\/v2\/pages\/64"}],"wp:attachment":[{"href":"http:\/\/localhost\/index.php\/wp-json\/wp\/v2\/media?parent=294"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}
\nProfessor:\u00a0<\/strong>Csaba Schneider
\nEmenta<\/span><\/span>:\u00a0<\/strong>Grupos nilpotentes, caracteriza\u00e7\u00f5es e s\u00e9ries centrais (descendentes e ascendentes). $p$-grupos, s\u00e9ries centrais em $p$-grupos. Grupos sol\u00faveis. O subgrupo de Frattini e as suas caracteriza\u00e7\u00f5es. Grupos de permuta\u00e7\u00f5es, grupos de matrizes, exemplos de grupos simples. Representa\u00e7\u00f5es complexas de grupos finitos; caracteres; ortogonalidade; caracter induzido; reciprocidade de Frobenius; integralidade; semissimplicidade e o Teorema de Maschke; o Teorema de Clifford. O Teorema de Burnside sobre grupos de ordem $p^aq^b$.<\/p>\n
\nD. J. S. Robinson – A course in the theory of groups (2nd Ed.), Springer, 1996.
\nG. James, M. Liebeck – Representations and Characters of Groups, Cambridge University Press, 2001.
\nI. M. Isaacs – Character Theory of Finite Groups, Academic Press, 1976.
\nL. C. Grove – Classical Groups and Geometric Algebra. American Mathematical Society, 2001.
\nH. Kurzweil, B. Stellmacher – The Theory of Finite Groups (An Introduction), Springer, 2004.
\nM. Aschbacher – Finite Group Theory. Cambridge University Press, 2000.
\nF. Lorenz – Algebra (vol 2) , Springer-Verlag 2006.<\/p>\n\n