{"id":2091,"date":"2023-03-17T07:39:19","date_gmt":"2023-03-17T10:39:19","guid":{"rendered":"http:\/\/localhost\/?page_id=2091"},"modified":"2023-03-19T14:31:33","modified_gmt":"2023-03-19T17:31:33","slug":"espaco-quociente","status":"publish","type":"page","link":"http:\/\/localhost\/index.php\/ensino\/algebra-linear-ii\/espaco-quociente\/","title":{"rendered":"Espa\u00e7o quociente"},"content":{"rendered":"
Em particular, $v+U=0+U$ se e somente se $v\\in U$.<\/p>\n<\/div>\n
Assuma que
\n$$
\n0=\\sum_{i=1}^m \\alpha_i (y_i+U)=\\left(\\sum_{i=1}^m \\alpha_i y_i\\right)+U.
\n$$
\n\u00e9 uma combina\u00e7\u00e3o linear do vetor nulo de $V\/U$ com $\\alpha_i\\in\\F$ e $y_i\\in Y$ (distintos). Segue que
\n$$
\n\\sum_{i=1}^m \\alpha_i y_i\\in U
\n$$
\ne assim
\n$$
\n\\sum_{i=1}^m \\alpha_i y_i=\\sum_{i=1}^k\\beta_i x_i
\n$$
\ncom $\\beta_i\\in \\F$ e $x_i\\in X$ (distintos).
\nOu seja
\n$$
\n\\sum_{i=1}^m \\alpha_i y_i-\\sum_{i=1}^k\\beta_i x_i=0.
\n$$
\nMas como os $x_i$ e os $y_j$ s\u00e3o L.I., temos que a combina\u00e7\u00e3o linear na linha anterior \u00e9 trivial. Logo $\\alpha_i=0$ e $\\beta_i=0$ para todo $i$. Isso implica que $\\bar Y$ \u00e9 L.I. e tamb\u00e9m que $\\bar Y$ \u00e9 base de $V\/U$.<\/p>\n<\/div>\n
Seja $V$ um espa\u00e7o vetorial e $U\\leq V$. Para $v\\in V$ definimos $$ v+U=\\{v+u\\mid u \\in U\\}. $$ Claramente $v+U\\subseteq V$ e o conjunto $v+U$ chama-se uma classe lateral em $V$. As seguintes s\u00e3o equivalentes para $v_1,v_2\\in V$: $v_1+U=v_2+U$ $v_1-v_2\\in U$ Em particular, $v+U=0+U$ se e somente se $v\\in U$. Exerc\u00edcio. Seja $V$ um espa\u00e7o … Continue reading Espa\u00e7o quociente<\/span><\/a><\/p>\n","protected":false},"author":1,"featured_media":0,"parent":2021,"menu_order":0,"comment_status":"closed","ping_status":"closed","template":"","meta":[],"_links":{"self":[{"href":"http:\/\/localhost\/index.php\/wp-json\/wp\/v2\/pages\/2091"}],"collection":[{"href":"http:\/\/localhost\/index.php\/wp-json\/wp\/v2\/pages"}],"about":[{"href":"http:\/\/localhost\/index.php\/wp-json\/wp\/v2\/types\/page"}],"author":[{"embeddable":true,"href":"http:\/\/localhost\/index.php\/wp-json\/wp\/v2\/users\/1"}],"replies":[{"embeddable":true,"href":"http:\/\/localhost\/index.php\/wp-json\/wp\/v2\/comments?post=2091"}],"version-history":[{"count":7,"href":"http:\/\/localhost\/index.php\/wp-json\/wp\/v2\/pages\/2091\/revisions"}],"predecessor-version":[{"id":2103,"href":"http:\/\/localhost\/index.php\/wp-json\/wp\/v2\/pages\/2091\/revisions\/2103"}],"up":[{"embeddable":true,"href":"http:\/\/localhost\/index.php\/wp-json\/wp\/v2\/pages\/2021"}],"wp:attachment":[{"href":"http:\/\/localhost\/index.php\/wp-json\/wp\/v2\/media?parent=2091"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}