{"id":1869,"date":"2022-10-02T22:21:11","date_gmt":"2022-10-03T01:21:11","guid":{"rendered":"http:\/\/localhost\/?page_id=1869"},"modified":"2023-01-06T14:46:28","modified_gmt":"2023-01-06T17:46:28","slug":"classes-residuais-e-o-z_n","status":"publish","type":"page","link":"http:\/\/localhost\/index.php\/ensino\/fundamentos-de-algebra\/classes-residuais-e-o-z_n\/","title":{"rendered":"Classes residuais"},"content":{"rendered":"
Seja $a\\in\\Z$. Denotaremos por $\\bar a$ a classe de equival\u00eancia de $a$ sob a rela\u00e7\u00e3o de equival\u00eancia $\\equiv_n$ definida na p\u00e1gina anterior. Em outras palavras, <\/p>\n","protected":false},"excerpt":{"rendered":" Nesta p\u00e1gina $n\\in\\N$ \u00e9 um n\u00famero fixado. De modo geral, para evitar trivialidades, pode assumir tamb\u00e9m que $n\\geq 2$, mas isso n\u00e3o \u00e9 necess\u00e1rio. Seja $a\\in\\Z$. Denotaremos por $\\bar a$ a classe de equival\u00eancia de $a$ sob a rela\u00e7\u00e3o de equival\u00eancia $\\equiv_n$ definida na p\u00e1gina anterior. Em outras palavras, \\[ \\bar a=\\{b\\in\\Z\\mid a\\equiv b\\pmod n\\}. … Continue reading Classes residuais<\/span><\/a><\/p>\n","protected":false},"author":1,"featured_media":0,"parent":1193,"menu_order":0,"comment_status":"closed","ping_status":"closed","template":"","meta":[],"_links":{"self":[{"href":"http:\/\/localhost\/index.php\/wp-json\/wp\/v2\/pages\/1869"}],"collection":[{"href":"http:\/\/localhost\/index.php\/wp-json\/wp\/v2\/pages"}],"about":[{"href":"http:\/\/localhost\/index.php\/wp-json\/wp\/v2\/types\/page"}],"author":[{"embeddable":true,"href":"http:\/\/localhost\/index.php\/wp-json\/wp\/v2\/users\/1"}],"replies":[{"embeddable":true,"href":"http:\/\/localhost\/index.php\/wp-json\/wp\/v2\/comments?post=1869"}],"version-history":[{"count":28,"href":"http:\/\/localhost\/index.php\/wp-json\/wp\/v2\/pages\/1869\/revisions"}],"predecessor-version":[{"id":1987,"href":"http:\/\/localhost\/index.php\/wp-json\/wp\/v2\/pages\/1869\/revisions\/1987"}],"up":[{"embeddable":true,"href":"http:\/\/localhost\/index.php\/wp-json\/wp\/v2\/pages\/1193"}],"wp:attachment":[{"href":"http:\/\/localhost\/index.php\/wp-json\/wp\/v2\/media?parent=1869"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}
\n\\[
\n\\bar a=\\{b\\in\\Z\\mid a\\equiv b\\pmod n\\}.
\n\\]
\nTemos ent\u00e3o que $\\bar a\\subseteq\\Z$ e que $\\bar a$ cont\u00e9m os inteiros que t\u00eam o mesmo resto que $a$ quando divididos por $n$. O conjunto $\\bar a$ \u00e9 chamado de classe residual<\/i> ou classe de congru\u00eancia<\/i> do elemento $a$ (m\u00f3dulo $n$).<\/p>\n
\n\\begin{align*}
\n\\bar 0&=\\{0,\\pm 5,\\pm 10,\\pm 15,\\ldots\\};\\\\
\n\\bar 1&=\\{1,-4,6,-9,11,-14,\\ldots\\};\\\\
\n\\bar 2&=\\{2,-3,7,-8,12,-13,\\ldots\\};\\\\
\n\\bar 3&=\\{3,-2,8,-7,13,-12,\\ldots\\};\\\\
\n\\bar 4&=\\{4,-1,9,-6,14,-11,\\ldots\\}.
\n\\end{align*}
\n\u00c9 f\u00e1cil verificar que se $a\\in\\Z$, ent\u00e3o $a$ pertence a exatamente uma destas classes; ou seja $\\bar a$ coincide com exatamente uma destas classes.<\/div>\n\n