{"id":1833,"date":"2022-06-22T18:21:08","date_gmt":"2022-06-22T21:21:08","guid":{"rendered":"http:\/\/localhost\/?page_id=1833"},"modified":"2022-06-22T21:48:04","modified_gmt":"2022-06-23T00:48:04","slug":"normalizacao-de-noether","status":"publish","type":"page","link":"http:\/\/localhost\/index.php\/ensino\/algebra-comutativa\/normalizacao-de-noether\/","title":{"rendered":"Normaliza\u00e7\u00e3o de Noether"},"content":{"rendered":"
Usando o Lema de Zorn, pode-se provar que \\(\\mathbb K\\)<\/span> possui subconjuntos maximais algebricamente independentes. Tal conjunto \u00e9 dito base transcendental<\/em><\/span> de \\(\\mathbb K\\)<\/span> sobre \\(\\mathbb F\\)<\/span>. Segue da defini\u00e7\u00e3o que se \\(B\\)<\/span> \u00e9 uma uma base transcendental de \\(\\mathbb K\\)<\/span> sobre \\(\\mathbb F\\)<\/span>, ent\u00e3o \\(\\mathbb K\\)<\/span> \u00e9 alg\u00e9brico sobre \\(\\mathbb F(B)\\)<\/span>.<\/p>\n Toda base transcendental de \\(\\mathbb K\\)<\/span> sobre \\(\\mathbb F\\)<\/span> t\u00eam a mesma cardinalidade.<\/p>\n<\/li>\n As seguintes s\u00e3o equivalentes para um conjunto \\(\\Omega\\subseteq \\mathbb K\\)<\/span>.<\/p>\n \\(\\Omega\\)<\/span> \u00e9 uma base transcendental de \\(\\mathbb K\\)<\/span> sobre \\(\\mathbb F\\)<\/span>.<\/p>\n<\/li>\n \\(\\Omega\\)<\/span> \u00e9 algebricamente indepdentente e \\(\\mathbb F(\\Omega)\\subseteq \\mathbb K\\)<\/span> \u00e9 uma extens\u00e3o alg\u00e9brica.<\/p>\n<\/li>\n<\/ol>\n<\/li>\n Sejam \\(X,Y\\subseteq \\mathbb K\\)<\/span> tais que<\/p>\n \\(X\\subseteq Y\\)<\/span>;<\/p>\n<\/li>\n \\(X\\)<\/span> \u00e9 algebricamente independente;<\/p>\n<\/li>\n the extens\u00e3o \\(\\mathbb F(Y)\\subseteq \\mathbb K\\)<\/span> \u00e9 alg\u00e9brica.<\/p>\n<\/li>\n<\/ol>\n Ent\u00e3o existe uma base transcendental \\(B\\)<\/span> de \\(\\mathbb K\\)<\/span> sobre \\(\\mathbb F\\)<\/span> tal que \\(X\\subseteq B\\subseteq Y\\)<\/span>.<\/p>\n<\/li>\n<\/ol>\n<\/div>\n \\(t_1,t_2,\\ldots,t_n\\)<\/span> s\u00e3o algebricamente independentes sobre \\(\\mathbb F\\)<\/span>;<\/p>\n<\/li>\n \\(R\\)<\/span> \u00e9 m\u00f3dulo-finito sobre \\(P=\\mathbb F[t_1,\\ldots,t_n]\\)<\/span>;<\/p>\n<\/li>\n \\(t_1R\\cap P = t_1P\\)<\/span>.<\/p>\n<\/li>\n<\/ol>\n<\/div>\n Nos resta provar (3). Temos que \\(t_1\\in P\\)<\/span> e \\(t_1\\in t_1R\\)<\/span> e assim \\(t_1P\\subseteq t_1R\\cap P\\)<\/span>. Seja \\(x\\in t_1R\\cap P\\)<\/span> e escreva \\(x=t_1y\\)<\/span> onde \\(y\\in R\\)<\/span>. Considere a cadeia de extens\u00f5es \\[P\\subseteq R\\cap \\mbox{Frac}(P)\\subseteq R\\]<\/span> e observe que \\(y\\in R\\cap \\mbox{Frac}(P)\\)<\/span>. Como \\(R\\)<\/span> \u00e9 m\u00f3dulo-finito sobre \\(P\\)<\/span>, temos que \\(R\\cap \\mbox{Frac}(P)\\)<\/span> (sendo um subm\u00f3dulo de um m\u00f3dulo finitamente gerado sobre um anel noetheriano) \u00e9 m\u00f3dulo-finito sobre \\(P\\)<\/span>. Agora considerando \\(R\\cap \\mbox{Frac}(P)\\)<\/span> em \\(\\mbox{Frac}(P)\\)<\/span>, temos que \\(R\\cap \\mbox{Frac}(P)\\)<\/span> \u00e9 integral sobre \\(P\\)<\/span>, ou seja \\(R\\cap \\mbox{Frac}(P)\\)<\/span> est\u00e1 contido na normaliza\u00e7\u00e3o \\(\\widetilde P\\)<\/span> de \\(P\\)<\/span> em \\(\\mbox{Frac}(P)\\)<\/span>. Mas \\(P\\)<\/span>, sendo \u00e1lgebra de polin\u00f4mios sobre um corpo, \u00e9 DFU, e assim \\(\\widetilde P=P\\)<\/span>. Isso implica que \\(y\\in P\\)<\/span>, ou seja \\(x\\in t_1P\\)<\/span>.<\/div>\n \\(t_1,t_2,\\ldots,t_n\\)<\/span> s\u00e3o algebricamente independentes sobre \\(\\mathbb F\\)<\/span>;<\/p>\n<\/li>\n \\(R\\)<\/span> \u00e9 m\u00f3dulo-finito sobre \\(P=\\mathbb F[t_1,\\ldots,t_n]\\)<\/span>;<\/p>\n<\/li>\n \\(\\mathfrak a\\cap P = (t_1,\\ldots,t_h)\\)<\/span> com algum \\(h\\in\\{1,\\ldots,n\\}\\)<\/span>.<\/p>\n<\/li>\n<\/ol>\n<\/div>\n \\(t_1,u_2,\\ldots,u_n\\)<\/span> s\u00e3o algebricamente independentes.<\/p>\n<\/li>\n \\(R\\)<\/span> \u00e9 m\u00f3dulo finito sobre \\(P_1=\\mathbb F[t_1,u_2,\\ldots,u_n]\\)<\/span>;<\/p>\n<\/li>\n \\(t_1R\\cap P_1=t_1P_1\\)<\/span>.<\/p>\n<\/li>\n<\/ol>\n Ora, usando a Hip\u00f3tese de Indu\u00e7\u00e3o para o anel \\(R_0=\\mathbb F[u_2,\\ldots,u_n]\\)<\/span> e o ideal \\(\\mathfrak b=\\mathfrak a\\cap R_0\\)<\/span>, ache \\(t_2,\\ldots,t_n\\in R_0\\)<\/span> tais que<\/p>\n \\(t_2,\\ldots,t_n\\)<\/span> s\u00e3o algebricamente independentes sobre \\(\\mathbb F\\)<\/span>;<\/p>\n<\/li>\n \\(R_0\\)<\/span> \u00e9 m\u00f3dulo-finito sobre \\(P_0=\\mathbb F[t_2,\\ldots,t_n]\\)<\/span>;<\/p>\n<\/li>\n \\(\\mathfrak b\\cap P_0=\\mathfrak a\\cap P_0=(t_2,\\ldots,t_h)_{P_0}\\)<\/span> com algum \\(h\\leq n\\)<\/span>.<\/p>\n<\/li>\n<\/ol>\n Seja \\(P=\\mathbb F[t_1,t_2,\\ldots,t_n]\\)<\/span>. Lembre que \\(R\\)<\/span> \u00e9 m\u00f3dulo-finito sobre \\(P_1\\)<\/span> e \\(\\mathbb F[u_2,\\ldots,u_n]\\)<\/span> \u00e9 m\u00f3dulo-finito sobre \\(P_0\\)<\/span>. Por um lema acima, \\(P_1=\\mathbb F[t_1,u_1,\\ldots,u_n]\\)<\/span> \u00e9 m\u00f3dulo-finito sobre \\(P=\\mathbb F[t_1,t_2,\\ldots,t_n]\\)<\/span>. Por transitividade, \\(R\\)<\/span> \u00e9 m\u00f3dulo-finito sobre \\(P\\)<\/span>. Um outro lema\u00a0acima implica tamb\u00e9m que \\(t_1,\\ldots,t_n\\)<\/span> s\u00e3o algebricamente independentes.<\/p>\n Nos resta provar afirma\u00e7\u00e3o \\((3)\\)<\/span>. Claramente \\(t_1,\\ldots,t_h\\in \\mathfrak a\\cap P\\)<\/span> e assim \\((t_1,\\ldots,t_h)_{P}\\subseteq \\mathfrak a\\cap P\\)<\/span>. Assuma que \n
\n
\n
\n (X\\cap Y)_{ \\mathbb F[Y]}.\\]<\/span> Em particular, se \\(X\\cap Y=\\emptyset\\)<\/span>, ent\u00e3o \\((X)_{\\mathbb F[x_{x_1,\\ldots,x_n}]}\\cap \\mathbb F[Y]=0\\)<\/span>.<\/div>\n
\nSeja \\(R=\\mathbb F[x_1,\\ldots,x_n]\\)<\/span> uma \u00e1lgebra de polin\u00f4mios e seja \\(t_1\\in R\\setminus\\{0\\}\\)<\/span> tal que \\(t_1R\\neq R\\)<\/span>. Existem \\(t_2,\\ldots,t_n\\)<\/span> tais que<\/p>\n\n
\n t_1=\\sum_v \\alpha_vx_1^{v_1}\\cdots x_n^{v_n}=
\n \\sum_v \\alpha_v x_1^{v_1}(t_2+x_1^{\\ell})^{v_2}\\cdots(t_n+x_1^{\\ell^{n-1}})^{v_n}.\\]<\/span> Usando a nota\u00e7\u00e3o \\[\\label{eq:n}
\n n(v)=v_1+v_2\\ell+v_3\\ell^2+\\ldots+v_n\\ell^{n-1},\\]<\/span> cada parcela na soma anterior tem a forma \\[\\alpha_v x_1^{v_1}(t_2+x_1^{\\ell})^{v_2}\\cdots(t_n+x_1^{\\ell^{n-1}})^{v_n}=
\n x_1^{n(v)}+\\mbox{(termos de grau menor em $t_1$).}\\]<\/span> Ora assuma que \\(\\ell\\)<\/span> \u00e9 maior que todo expoente \\(v_i\\)<\/span> aparecendo em\u00a0na express\u00e3o para \\(t_1\\)<\/span> acima. Neste caso \\(n(v)\\)<\/span> pode ser visto como a expans\u00e3o de um n\u00famero natural na base \\(\\ell\\)<\/span>. Em particular, \\(n(v)\\neq n(v')\\)<\/span> se \\(v\\neq v'\\)<\/span>. Isso quer dizer que os termos \\(\\alpha_v x_1^{n(v)}\\)<\/span> n\u00e3o se cancelam. Seja \\(w\\)<\/span> o vetor com \\(\\alpha_w\\neq 0\\)<\/span> e \\(n(w)\\)<\/span> maximal. Neste caso \\[t_1=\\alpha_wx_1^{n(w)}+\\mbox{(termos de menor grau em $x_1$)}.\\]<\/span> Assim, obtemos a equa\u00e7\u00e3o \\[x_1^{n(w)}-t_1+\\mbox{(termos de menor grau em $x_1$)}=0\\]<\/span> na qual o lado esquerdo \u00e9 um polin\u00f4mio na vari\u00e1vel \\(x_1\\)<\/span> com coeficinetes em \\(\\mathbb F[t_1,\\ldots,t_n]\\)<\/span>. Portanto \\(x_1\\)<\/span> \u00e9 integral sobre \\(P=\\mathbb F[t_1,\\ldots,t_n]\\)<\/span> e \\(R\\)<\/span> \u00e9 m\u00f3dulo-finito sobre \\(\\mathbb F[t_1,\\ldots,t_n]\\)<\/span>. Ora, o lema\u00a0acima implica tamb\u00e9m que \\(t_1,\\ldots,t_n\\)<\/span> s\u00e3o algebricamente independentes sobre \\(\\mathbb F\\)<\/span>.<\/p>\n\n
\n
\n