{"id":1673,"date":"2022-01-30T18:07:31","date_gmt":"2022-01-30T21:07:31","guid":{"rendered":"http:\/\/localhost\/?page_id=1673"},"modified":"2023-01-06T14:52:48","modified_gmt":"2023-01-06T17:52:48","slug":"equacoes-polinomiais-do-segundo-e-terceiro-grau","status":"publish","type":"page","link":"http:\/\/localhost\/index.php\/ensino\/fundamentos-de-algebra\/equacoes-polinomiais-do-segundo-e-terceiro-grau\/","title":{"rendered":"Equa\u00e7\u00f5es polinomiais do segundo grau"},"content":{"rendered":"
Quando o polin\u00f4mio $f(x)\\in\\F[x]$ est\u00e1 na forma mais geral $f(x)=ax^2+bx+c$ com $a\\neq 0$, as ra\u00edzes de $f(x)$ s\u00e3o as mesmas que as ra\u00edzes de
\n\\[
\nx^2+(b\/a)x+c\/a
\n\\]
\nque s\u00e3o
\n\\[
\n\\frac{-b\/a\\pm\\sqrt{(b\/a)^2-4c\/a}}2=\\frac{-b\\pm\\sqrt{b^2-4ac}}{2a}.
\n\\]<\/p>\n
Considere um polin\u00f4mio \\[ f(x)=x^2+bx+c\\in\\F[x] \\] onde $\\F$ \u00e9 corpo arbitr\u00e1rio no qual $1+1\\neq 0$. Queremos determinar as ra\u00edzes de $f(x)$. Note que \\[ x^2+bx+c=(x+b\/2)^2-b^2\/4+c, \\] e assim a equa\u00e7\u00e3o $f(x)=0$ \u00e9 equivalente \u00e0 equa\u00e7\u00e3o \\[ (x+b\/2)^2=b^2\/4-c=\\frac{b^2-4c}4; \\] ou seja \\[ x+b\/2=\\pm\\frac{\\sqrt{b^2-4c}}2. \\] Assim as ra\u00edzes do polin\u00f4mio s\u00e3o $x_1$ e $x_2$ onde \\[ x_1=\\frac{-b+\\sqrt{b^2-4c}}2\\quad\\mbox{e}\\quad … Continue reading Equa\u00e7\u00f5es polinomiais do segundo grau<\/span><\/a><\/p>\n","protected":false},"author":1,"featured_media":0,"parent":1193,"menu_order":0,"comment_status":"closed","ping_status":"closed","template":"","meta":[],"_links":{"self":[{"href":"http:\/\/localhost\/index.php\/wp-json\/wp\/v2\/pages\/1673"}],"collection":[{"href":"http:\/\/localhost\/index.php\/wp-json\/wp\/v2\/pages"}],"about":[{"href":"http:\/\/localhost\/index.php\/wp-json\/wp\/v2\/types\/page"}],"author":[{"embeddable":true,"href":"http:\/\/localhost\/index.php\/wp-json\/wp\/v2\/users\/1"}],"replies":[{"embeddable":true,"href":"http:\/\/localhost\/index.php\/wp-json\/wp\/v2\/comments?post=1673"}],"version-history":[{"count":4,"href":"http:\/\/localhost\/index.php\/wp-json\/wp\/v2\/pages\/1673\/revisions"}],"predecessor-version":[{"id":2013,"href":"http:\/\/localhost\/index.php\/wp-json\/wp\/v2\/pages\/1673\/revisions\/2013"}],"up":[{"embeddable":true,"href":"http:\/\/localhost\/index.php\/wp-json\/wp\/v2\/pages\/1193"}],"wp:attachment":[{"href":"http:\/\/localhost\/index.php\/wp-json\/wp\/v2\/media?parent=1673"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}