{"id":1386,"date":"2021-11-07T21:43:29","date_gmt":"2021-11-08T00:43:29","guid":{"rendered":"http:\/\/localhost\/?page_id=1386"},"modified":"2023-01-06T14:46:06","modified_gmt":"2023-01-06T17:46:06","slug":"a-funcao-phi-de-euler","status":"publish","type":"page","link":"http:\/\/localhost\/index.php\/ensino\/fundamentos-de-algebra\/a-funcao-phi-de-euler\/","title":{"rendered":"A fun\u00e7\u00e3o $\\varphi$ de Euler"},"content":{"rendered":"
Antes do teorema principal desta p\u00e1gina, colocamos um exerc\u00edcio.<\/p>\n
Agora note que $\\mdc {r_n}n=\\mdc an$ e $\\mdc {r_m}m=\\mdc am$. Usando o exerc\u00edcio anterior, obtemos que
\n\\[
\n\\mdc a{mn}=\\mdc am\\mdc an=\\mdc {r_m}m\\cdot\\mdc {r_n}n.
\n\\]
\nMas a equa\u00e7\u00e3o anterior implica tamb\u00e9m que $\\mdc a{mn}=1$ se e somente se $\\mdc {r_m}m=\\mdc{r_n}n=1$.<\/p>\n
Restringindo a bije\u00e7\u00e3o $\\psi$ para o conjunto $X=\\{a\\in\\{0,\\ldots,mn-1\\}\\mid \\mdc a{mn}=1\\}$ obtemos uma bije\u00e7\u00e3o
\n\\[
\n\\psi:X\\to Y\\times Z
\n\\]
\nonde
\n\\begin{align*}
\nY&=\\{a\\in\\{0,\\ldots,m-1\\}\\mid \\mdc a{m}=1\\};\\\\
\nZ&=\\{a\\in\\{0,\\ldots,n-1\\}\\mid \\mdc a{n}=1\\}.
\n\\end{align*}
\nA exist\u00eancia da bije\u00e7\u00e3o entre $X$ e $Y\\times Z$ implica que $|X|=|Y\\times Z|$. Assim
\n\\[
\n\\varphi(mn)=|X|=|Y\\times Z|=|Y|\\cdot |Z|=\\varphi(m)\\varphi(n).
\n\\]<\/p>\n<\/div>\n
Seja $n\\in\\N$. Definimos \\[ \\varphi(n)=|\\{a\\in\\{1,\\ldots,n\\}\\mid \\mdc an=1\\}|. \\] Ou seja, $\\varphi(n)$ \u00e9 o n\u00famero de naturais entre $1$ e $n$ que s\u00e3o coprimos com $n$. Por exemplo, uma conta f\u00e1cil mostra que \\[ \\varphi(1)=\\varphi(2)=1,\\quad \\varphi(3)=\\varphi(4)=2,\\quad \\varphi(5)=4,\\quad \\mbox{etc}. \\] A fun\u00e7\u00e3o $\\varphi$ \u00e9 chamado fun\u00e7\u00e3o de Euler, ou fun\u00e7\u00e3o totiente de Euler. Segue imediatamente da defini\u00e7\u00e3o … Continue reading A fun\u00e7\u00e3o $\\varphi$ de Euler<\/span><\/a><\/p>\n","protected":false},"author":1,"featured_media":0,"parent":1193,"menu_order":0,"comment_status":"closed","ping_status":"closed","template":"","meta":[],"_links":{"self":[{"href":"http:\/\/localhost\/index.php\/wp-json\/wp\/v2\/pages\/1386"}],"collection":[{"href":"http:\/\/localhost\/index.php\/wp-json\/wp\/v2\/pages"}],"about":[{"href":"http:\/\/localhost\/index.php\/wp-json\/wp\/v2\/types\/page"}],"author":[{"embeddable":true,"href":"http:\/\/localhost\/index.php\/wp-json\/wp\/v2\/users\/1"}],"replies":[{"embeddable":true,"href":"http:\/\/localhost\/index.php\/wp-json\/wp\/v2\/comments?post=1386"}],"version-history":[{"count":10,"href":"http:\/\/localhost\/index.php\/wp-json\/wp\/v2\/pages\/1386\/revisions"}],"predecessor-version":[{"id":1986,"href":"http:\/\/localhost\/index.php\/wp-json\/wp\/v2\/pages\/1386\/revisions\/1986"}],"up":[{"embeddable":true,"href":"http:\/\/localhost\/index.php\/wp-json\/wp\/v2\/pages\/1193"}],"wp:attachment":[{"href":"http:\/\/localhost\/index.php\/wp-json\/wp\/v2\/media?parent=1386"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}